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Abstract—Traditionally, visualizing benchmark problems is an
integral task in the domain of evolutionary algorithms devel-
opment. Researchers get inspired for new search heuristics by
challenges observed in functional landscapes. Moreover, land-
scape characteristics, features, and even terminology to describe
them are derived from visualizations. And most importantly,
benchmark designers need visualizations for identifying diverse
problems that potentially challenge different aspects of optimiza-
tion algorithms. As easy as it is to visualize single-objective
problems, until recently there were hardly any approaches
for gaining similar insights for multi-objective problems. Also,
there have been no seamlessly accessible tools to support such
visualizations.

This paper presents a comprehensive overview of the available
visualization techniques from literature, including two interactive
techniques to visualize three-dimensional problems, as well as two
novel techniques which are suitable to scale some visualization
properties to even higher-dimensional spaces. All presented
techniques are integrated into a single tool, the moPLOT-
dashboard, which enables users to perform landscape analyses
in an interactive manner. Finally, the value of the tool and the
visualizations is demonstrated in a series of usage scenarios on
well-known benchmark problems.

Index Terms—Multi-Objective Optimization, Visualization,
Multimodal Optimization, Benchmarks, Theory, Algorithms.

I. INTRODUCTION

THE goal of developing benchmarks for optimization
algorithms is centrally focused on providing a portfolio of

challenging objective functions that is as heterogeneous as pos-
sible. By means of the different challenges induced by these
problems, weak points of algorithms shall be identified on the
one hand and performance comparisons between algorithms
in different situations shall be enabled on the other hand.

Traditionally, in continuous optimization, benchmarks are
composed of problems that exhibit specific characteristics or
structural properties. These characteristics are usually based
on a fundamental notion of so-called functional or fitness
landscapes [1]. In low-dimensional search spaces, we tend to
even name them as mountains, valleys, plateaus, ridges, or by
other names from the familiar three-dimensional world to give
the topological structures an imaginable visual equivalent [2].
It is not surprising, then, that visualization is an important
aspect of benchmark development – just as it is central to the
development of algorithms.
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While we are familiar with and intuitively use the descrip-
tive representations of function landscapes from optimization
textbooks in the case of a single-objective function, for a long
time there existed no analogous notion for multi-objective
optimization. This is mostly due to the simple fact that
the objective space for single-objective optimization is one-
dimensional. As such, the objective value can be interpreted
as “height” in the function landscape. However, each solution
for a multi-objective problem (MOP) f : Rp → Rk needs to
be optimal with respect to a k-dimensional objective space
vector [3], [4]. Thus, a direct and intuitive visualization and
interpretation like in the single-objective case is difficult –
even in low-dimensional search spaces.

Studying a MOP’s Pareto set – i.e., its global optimum
as will be defined in Section II – has nonetheless been the
focus of visual investigations for years. Yet, due to a lack of
suitable methods, the main technique for visualizing solutions
and discussing properties of MOPs has been a simple scatter
plot of approximated Pareto-optimal solutions (i.e., the Pareto
set) and their image in objective space (called Pareto front).

Obviously, this approach corresponds to plotting a single
or few (evaluated) optimal solution(s) in case of a single-
objective problem (SOP) – an approach that is usually not used
for SOPs because it provides too little information. In fact, it
puts objective space representation into focus and hence does
not tell much about the problem’s structural characteristics
in the decision space. As such, it does not help at all in
identifying challenging properties for benchmark development,
as well as for algorithm design. Moreover, this decades-long
lack of visualization methods could possibly also be the cause
for the absence of a common notion of multimodality and
localness in the multi-objective optimization community [5].

For benchmark development, the lack of visualization tech-
niques for MOO function landscapes resulted in a very
limited idea of the structures in decision space. Not only
early descriptions of benchmark problems [6], [7] but also
nowadays prevalent benchmark suites like ZDT [8], DTLZ [9],
WFG [10], ED [11], or CEC benchmarks [12], [13] mainly
rely on presenting scatter plots of Pareto front and Pareto set
approximations. The rest of the search space is considered (at
most) by randomly placed points in the corresponding scatter
plots.

Although techniques for visualizing solutions for multi-
objective problems have been proposed over the years [14],
[15], they have not been considered extensively for benchmark
visualization. Only few benchmark developers try to provide
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additional information on the search space [16], using, for
instance, line cuts through decision space.1 Certainly, one
reason for this observation is that until recently, almost no
alternative visualization technique was available. Apart from
some early, though little used global techniques [17], it is
only since 2016 that new approaches for visualizing multi-
objective landscapes have been proposed [18]–[23]. However,
until now, a survey that focuses on these recently developed
visualization methods, as well as an accessible toolbox that
enables the visualization and analysis of both existing as well
as new benchmark problems have been missing.

Within this work, we present a web-based (hence platform-
independent) and interactive tool2 originally introduced in [24]
for the visualization of benchmarks based on the R-package
moPLOT [21]. It allows to take a deeper look into decision
space structures by integrating multiple graphical representa-
tions of search space and objective space into a single, ac-
cessible application. Besides two-dimensional representations,
we also provide two visual approaches for three-dimensional
decision spaces. These allow to identify structures beyond the
globally efficient set (Pareto set). Local structures and basins
of attraction surrounding locally efficient sets can be visualized
for standard benchmarks and individually designed problems.
A new graph-based representation of basins of attraction (and
their interactions) is introduced, as well as an adaptation
of the well known Parallel Coordinates Plot visualization
for multimodal problems. These approaches could potentially
address even higher-dimensional search spaces, if appropriate
methods, e.g., for computing the necessary data for all efficient
sets or local fronts, would be available.

The remainder of this work is structured as follows: Section
II introduces some mathematical fundamentals and Section III
gives an overview of the available visualization techniques for
continuous MOPs. Then, Section IV describes the architecture
and features of the moPLOT dashboard. This is followed by
several usage scenarios demonstrating the landscape analyses
enabled by state-of-the-art visualizations in Section V. Finally,
Section VI presents the conclusion.

II. BACKGROUND

In this section, we will first provide mathematical notions
and concepts which are useful for understanding and dis-
cussing the differences of the visualization techniques shown
within this work. This is followed by a more detailed discus-
sion of the notion of multi-objective gradients and basins of
attraction.

Throughout this work, we assume box-constrained contin-
uous MOPs f : X → Rk that w.l.o.g. shall be minimized.
Moreover, the considered search space X is assumed to be
bounded by lower and upper bounds l,u ∈ Rp, respectively.
Note that the vast majority of the visualizations used within
our dashboard (see Sections III and IV for further details) are
able to depict search and objective spaces that are two- or
three-dimensional, i.e., k, p ∈ {2, 3}.

1http://numbbo.github.io/coco-doc/bbob-biobj/functions/
2https://schaepermeier.shinyapps.io/moPLOT

Potential regions of interest within a MOP’s landscape are,
among others, locally and/or globally efficient sets (i.e., the
multi-objective counterparts of local and global optima). The
globally efficient set X ∗ ⊆ X , better known as Pareto set,
refers to the set of globally non-dominated solutions. Further,
a point x∗ ∈ X is said to be a non-dominated solution, if
there exists no other solution x ∈ X with fi(x) ≤ fi(x

∗),
i = 1, . . . , k, and fi(x) < fi(x

∗) for at least one i. The image
f(X ∗) of the respective Pareto set is called the Pareto front.
In analogy to the single-objective case, local optimality in the
multi-objective case is also defined by means of the dominance
relation in the local neighborhood. Hence, a solution x is said
to be a locally efficient point, if it is not dominated by any other
solution y ∈ Bε(x) within its surrounding ε-ball Bε(x) ⊆ X
(for a sufficiently small ε > 0). A connected set of locally
efficient points then forms a locally efficient set XLE , i.e., the
multi-objective version of a local optimum [5], [25].

An important landscape property that affects both algorithm
engineers and benchmark designers are the so-called attraction
basins. Prior to formally defining these basins of attraction,
we mention on a qualitative level that they constitute regions
within the search space, where a gradient-based local search
strategy will – independent of its starting position within that
basin – always converge to (and potentially get trapped in)
the same locally efficient set. Thus, we need to introduce
the notion of a multi-objective gradient (MOG), which is a
vector that is oriented towards a common descent direction
of the MOP’s single-objective components. If the MOG is
computed in a locally efficient point, no common descent
direction exists and hence the MOG is of length zero. As
elaborated in [26], the multi-objective gradient can be defined
as shown in Equation (1):

∇f(x) =

k∑
i=1

α∗
i∇fi(x). (1)

Therein, α∗ is a weight vector chosen according to Equa-
tion (2), such that the resulting MOG is the shortest vector
in the convex hull of the single-objective gradients.

α∗ = argmin
α

{∥∥∥∥∥
k∑

i=1

αi∇fi(x)

∥∥∥∥∥
∣∣∣∣∣ αi ≥ 0,

k∑
i=1

αi = 1

}
(2)

A potential bias induced by the individual lengths of the
gradients can be compensated by normalizing them before
the MOG computation [27]. We use the MOG definition with
normalized single-objective gradients for the remainder of this
work. In the bi-objective case, this simplifies to the arithmetic
mean of the normalized single-objective gradients [24].

Related to the notion of MOGs (as one descent strategy)
and according to the general notion introduced by Törn and
Zilinskas [28] for any local descent procedure, we define the
region of attraction of a locally efficient point x∗

L ∈ XLE of a
MOP as follows: attr(x∗

L) ⊆ X is the largest set of points such
that for any starting point a MO steepest descent procedure
with infinitely small steps will converge on x∗

L. Accordingly,
the basin of attraction of a (locally) efficient set XLE is defined
as the union of non-overlapping connected regions of attraction

http://numbbo.github.io/coco-doc/bbob-biobj/functions/
https://schaepermeier.shinyapps.io/moPLOT
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of the elements of XLE . Clearly, these basins of attraction are
of major interest for the notion of a functional landscape and
an interpretation of algorithmic behavior on such landscapes.

Finally we consider the borders between different basins
of attraction. These so-called ridges are the set of points that
separate adjacent basins of attraction. All points belonging to
such a ridge share the property of having multiple neighboring
solutions that belong to different basins of attraction.

Next, we present a variety of techniques suitable for visu-
alizing MOPs and also discuss their respective strengths and
weaknesses using the concepts and terminology defined above.

III. VISUALIZATION APPROACHES

Available visualization approaches for MOPs can be clas-
sified into (1) methods for depicting the relation of objective
values of multiple dominating or dominated solutions, and (2)
methods for highlighting structural properties of the decision
space.

Certainly, one of the most intuitive approaches of visually
representing solutions of a MOP is a scatter plot of the
Pareto front and (if needed) also of dominated points. It
aims for directly representing the quality relation of different
solutions in objective space for up to three dimensions. Much
effort has been put into advanced visualization techniques for
enabling visualization of more than three objectives at the
same time. Early visualization techniques simply reduce the
objective space by measuring and plotting the distance of each
solution to an approximated Pareto front or to neighboring so-
lutions, respectively [30]. Other approaches [31], [32] employ
more sophisticated dimension reduction techniques like self-
organizing maps [33] for denoting similarity of solutions in
lower dimensions. Further techniques from this subclass of
approaches use Radial coordinate visualization [34] or allow
arbitrary dimension reduction approaches (like PCA [35] or
MDS [36]) for creating projection views of so-called Skylines
that allow a first comparison and clustering of solutions be-
fore selecting detailed views in a dashboard-oriented decision
support tool [37]. In contrast, other authors propose heatmap-
based techniques [38] or other lossless projections [39] to
provide decision makers with a notion of solution quality
and distribution (in objective space and partly sometimes also
in decision space). Finally, we want to mention a compre-
hensive survey on approaches from multi-criteria decision
making [40], which provides a specific discussion on reduction
techniques with a focus on the decision-making process.

The availability of visualization techniques for decision
space structures – the landscape of MOPs – was, however,
very limited for a long time. In fact, for almost two decades,
the so-called cost landscape proposed by Fonseca [17] (see
Section III-A1) has been the only visualization technique
that provided a landscape-like illustration of a MOP’s fitness
function. In the beginning of the 2010s, the PhD thesis of Tušar
[14], as well as the subsequent work by Tušar and Filipič
[15] brought new life into the discussion of this research
topic. Yet, as acknowledged by the authors themselves, the
methods presented in their work (scatter plot matrices, sam-
mon mapping, principal components, etc.) were insufficient

for investigating landscape structures of MOPs. They thus pro-
posed a new visualization technique, called prosection method,
which iteratively reduced a MOP’s dimensionality by means
of subsequent hyperplane cuts. However, these cuts produce
a severe information loss and hence make this technique
impracticable for visual inspections of MOP landscapes. In
recent years, several visualization techniques have been devel-
oped, which (a) are capable of illustrating MOP landscapes
in search and/or objective spaces while also accounting for
interaction effects, thereby (b) reveal challenging, as well as
(to a certain degree) efficiently exploitable structural properties
in these landscapes, and (c) help to study search dynamics of
(evolutionary) optimization algorithms.

In the following, we will summarize the general idea of all
the relevant visualization approaches from the literature. To
this end, Section III-A will give an overview of several visu-
alization techniques that combine the information of a MOP’s
search and objective space within a single plot. Subsequently,
in Section III-B, we will complement the visualization tech-
niques for two- and three-dimensional problems in decision
and/or objective space introduced before by methods which
even support the illustration of high-dimensional MOPs and
many-objective problems. For illustrative purposes, as well as
for a simplified comparison of the methods presented below,
we depict their respective visualizations in Figures 1, 2 and
3, respectively. The strengths and weaknesses of all presented
visualization methods are discussed in Section III-C, and their
properties are summarized in Table I. At last, Section III-D
presents two interactive 3D visualizations and elaborates on
the opportunities that may arise from integrating static visual-
ization procedures into interactive dashboards.

A. Illustrating MOPs via Heatmaps

All the images shown in this subsection are based on the
same exemplary bi-objective multiple peaks problem3. For
the methods illustrated in Figure 1, the plots are shown in
the search space (top row), as well as in the corresponding
objective space (bottom).

It should be emphasized that all of the methods discussed
below are based exclusively on a grid of evaluated points,
making them completely independent of specific function
definitions. Due to this high flexibility, any of the methods can
easily be applied to novel benchmark problems, true black-box
functions, or even problems from real-world applications – as
long as the said grid of evaluated points can be provided.

1) Cost Landscape: As stated in the beginning of this
section, the cost landscapes by Fonseca [17] (left-most top
and bottom images in Figure 1) has been one of the first
methods to illustrate a MOP’s structural relationships in the
search space. For each point in the landscape, the color (which
can be interpreted as height) depicts the number of solutions
that dominate the respective solution (i.e., its Pareto rank). This
method primarily focuses on the global dominance relationship

3The two single-objective components were produced with the MPM2-
function generator available within the R-package smoof [41]. Both objec-
tives were configured with three peaks with random topology, two-dimensional
search space and random seeds 4 and 8, respectively.



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. Y, XYZ 4

Fig. 1. Overview of decision space visualization techniques with corresponding visualizations in objective space. Visualizations from left to right: Cost
landscape [17], gradient field heatmap [19], PLOT [21] and local dominance landscape [29]. The top row shows the decision, and the bottom row the
corresponding objective space. All visualizations use a grid with a resolution of 1000 evenly-spaced points per dimension, except for the cost landscape, which
is rendered using a resolution of 500 given the significant computational overhead. The gray color scale denotes more (locally) optimal points with darker
colors, while the other scale denotes better values (w.r.t. the given visualization) with blue, and worse with red. The color scales are log-scaled.

– as can be seen very well in the continuous color gradient in
the objective space – and thus is very suitable for highlighting
a MOP’s globally efficient sets (i.e., its Pareto sets). However,
challenging structures like locally efficient sets (along with
their basins of attraction) are hardly visible.

2) Multi-Contour Plot: In order to facilitate investigations
of a MOP’s local structures (caused by the mutual interactions
of the optima of all objectives), Kerschke et al. [18] used
contour plots to visually combine the landscapes of the MOP’s
individual single-objective components into a single image.
As shown in Figure 2 (left), each contour plot reveals the
positions of its objectives’ local optima, which in turn are an
indication for locally efficient points in the MOP landscape. By
augmenting contour plots with sets of non-dominated points,
i.e., Pareto sets, this visualization approach can provide some
initial indications of both a MOP’s local and global landscape
structure. However, contour plots consider MOPs primarily
from a single-objective perspective, so interaction effects can
at most be anticipated. Moreover, there is no native counterpart
for visualizing the respective information in the objective
space.

3) Gradient Field Heatmap: An extension of the aforemen-
tioned contour plots – although with a much stronger focus
on the local relationships – has been proposed by Kerschke
and Grimme [19]. Their gradient field heatmaps (GFHs) not
only depict the MOP’s locally efficient sets, but also reveal the
corresponding (surrounding) attraction basins. That is, similar
to basins of attraction in single-objective optimization, starting
in any point of the search space, a gradient-based local search
strategy will descend to one of the locally efficient points
enclosed within the respective basin (see second column of

Fig. 2. Overview of additional visualization techniques. In contrast to the
techniques used in Figure 1, the methods used for producing the images
above are limited to illustrations of the search space. Left: Multi-contour plot
(with overlaid Pareto set approximation) [18]. Right: The herein proposed set
transition graph.

Figure 1). The gradients are originally evaluated directly on
the test function using finite difference approximations, but
are approximated here using their respective grid neighbors,
instead, as in [21]. The illustrated color (or height) of a point
from the GFH corresponds to the cumulated length of a path
of normalized multi-objective gradients from the respective
point to its attracting locally efficient point. It should be noted
that although the depicted efficient sets also contain the Pareto
sets, it is very difficult to identify them among the numerous
locally and globally efficient sets. Therefore, these plots are
less suitable for studying global relationships.

4) PLOT: While the cost landscapes were well suited for
visualizing global relationships, the GFHs were particularly
helpful in depicting local structures. Schäpermeier et al. [21]
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Fig. 3. The two PCP visualization techniques discussed in this work
(objectives are individually scaled to the [0, 1] range). Left: The global PCP
visualization for nondominated evaluated points only. Right: The local PCP,
including all (previously approximated) locally efficient sets, denoted by the
different colors.

thus tried to combine the best of both methods within their
PLOT (Plot of Landscapes with Optimal Trade-offs) method,
which is illustrated in the third column of Figure 1. The gray-
colored background shows the attraction basins known from
the GFH approach. On top of those basins, once again, all
locally and globally efficient sets are depicted (in colors).
However, in contrast to GFHs, the coloring now corresponds to
the Pareto ranking of the efficient points. It thus enables visual
comparison of the efficient sets on a global level. In summary,
PLOT is the first visualization technique that enables the
mutual investigation of a MOP’s global and local structures.

5) Local Dominance Landscape: The images on the right
of Figure 1 can be regarded as a discretized and hence simpler
version of PLOT. In contrast to the previously discussed con-
tinuous color scales, the local dominance landscape proposed
by Fieldsend et al. [29] use a categorical classification, which
roughly translates into locally/globally optimal regions (black),
basins of attraction (gray) and undecided regions where multi-
ple basins are reachable by their method (white). Note that this
idea is similar to the cell mapping concept from the single-
objective domain [42]. Within the respective illustration, a
black point indicates a point that is mutually non-dominating
with all the points from its Moore neighborhood. Thus, the
black regions correspond roughly to the locally efficient sets,
and hence also contain the Pareto set approximation w.r.t. the
grid of evaluated points. A gray-colored region indicates a
basin of attraction, in which each of its points has at least
one dominating neighbor and all sequential movements in
direction of the dominating neighbors will converge in (one
of the points of) the same locally optimal region. At last,
each of the white regions is constituted of points, which
have at least two dominating neighbors that lead to opposing
optimal regions. Therefore, all the white regions basically
form borders or ridges between adjacent attraction basins.
Noticeably, this rather coarse categorization results in optimal
regions that are much broader than for PLOT and co., which
can be explained by artifacts that have been introduced by
the Moore neighborhood. That is, there are often 45◦ and 90◦

artifacts around the locally efficient sets (as found by the other
techniques), which incorrectly include a large amount of points
around the locally efficient sets.

B. Approaches Capable of Visualizing Large-Scale MOPs

The methods discussed in Section III-A enable the visu-
alization (and subsequent analysis) of MOPs whose search
and objective spaces are at most three-dimensional. If there
is a need to visually represent and assess higher-dimensional
MOPs, these methods reach their limits. In the following, we
present two methods that could potentially scale further and
thereby could enable representation of high-dimensional and
many-objective problems. Here, we focus on the two- and
three-dimensional cases so that they can be computed within
the same framework as the other visualizations. In particular,
the approximation of the locally efficient sets would require a
different strategy for higher-dimensional decision spaces.

1) Parallel Coordinates Plots: Apart from scatter plots,
parallel coordinates plots (PCPs) have been a popular tool
for analyzing MOPs for years [15], [43]. The general idea of
PCPs is to arrange the MOP’s objectives as parallel coordinates
along one axis, then mark the corresponding objective values
as ‘heights’ of the respective coordinates, and finally connect
these markers with a line [44]. Consequently, each observation
from the MOP’s p-dimensional (objective) space is represented
as a single line connecting the points of p successive parallel
coordinates. It should be noted, though, that PCPs – the way
they are commonly used in the MO context – provide very
little information about a MOP’s structure: usually, they only
illustrate the Pareto front of the MOP. Hence, classical PCPs
only offer insights into the MOP’s global structure – and
only based on an objective space perspective. This would
be akin to describing a single-objective problem in terms
of the objective value of its optimum. Next to this classical
approach (which we refer to as global PCP), we propose a
PCP visualization that is enriched by the approximated locally
efficient sets extracted from the PLOT visualizations. The
local PCP method applies the concept of colored polylines,
which depict observations from the same cluster in identical
colors [45]. By treating each locally efficient set as a separate
set (i.e., cluster) of points, our approach enables visually
distinguishing these sets from each other. Consequently, the
local PCP method nicely complements its global counterpart,
which focuses exclusively on the non-dominated points. Both
PCP visualization approaches are demonstrated in Figure 3.

Further, previous works showed that PCPs are easily scal-
able to higher-dimensional problems [44]. In this context it
should be noted that too many objectives (and thus PCP
coordinates) could cause visual clutter. Yet, this limitation
appears to be negligible for the majority of MOPs.

2) Set Transition Graph: Investigations of the previously
discussed methods revealed superpositions of neighboring
basins of attraction (see, e.g., gradient field heatmap and PLOT
in Figure 1), which enable even rather simple local search
strategies to move from one locally efficient set to an adjacent
one that is dominating the current efficient set [20], [25]. The
superposition relationship between the locally efficient sets
lends itself to a natural representation as a graph (see right
image of Figure 2), which we propose as a new visualization
technique called set transition graph. Similar to the concept
of Local Optima Networks (LONs) [23], [46] and a related
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combinatorial MO variant called Pareto Local Optimal Solu-
tions Networks (PLOS-net) [47], each node in the proposed
set transition graph represents a single locally efficient set and
a directed edge between two sets A and B denotes that set
A is superimposed by set B. In an extension of this method,
the nodes within the graph are filled with one of two different
colors: green nodes indicate global optima, whereas red points
correspond to non-global optima. Moreover, the amount of
color used for filling a node indicates the proportion of local
search runs that traversed (or even converged in) the respective
node (i.e., efficient set). That is, the larger the green or red area
of a node is, the more likely will the respective efficient set be
visited by a local search run. In the two-dimensional decision
space given here, the placement of the nodes reflects that of
the corresponding locally efficient set in the decision space
by placing each node on the (approximate) medoid of the
corresponding set. Higher-dimensional set transition graphs
can be visualized, e.g., by a stress-based graph layout.

Apart from finding a suitable planar visualization of the sets
and transitions, the main challenge for scaling the transition
graphs to higher dimensions is an efficient computation of
the locally efficient sets and the corresponding set transitions.
The approach presented here, based on densely sampling a
grid of points in the decision space, suffers from the curse of
dimensionality and this data will need to be acquired differ-
ently, e.g., with specialized local search strategies such as the
Multi-Objective Landscape Explorer (MOLE) [48], to scale
the transition graphs beyond the presented three decision space
dimensions. Except for this limitation, set transition graphs are
well scalable since their number of nodes is independent of
the dimensionality of the search or objective space. Instead,
the number of nodes in the graph depends only on the MOP’s
number of locally efficient sets.

C. Exemplary Comparison of the Considered Visualization
Techniques

Now that we have introduced the technical details of the
state-of-the-art techniques for visualizing MOPs – including
the two novel scalable methods that we proposed in Sec-
tion III-B – we will once again take a look at Figures 1,
2 and 3. This time, however, the focus is on discussing the
advantages and disadvantages of all the methods. To facilitate
a comparison of the surveyed visualization approaches, their
properties are summarized in Table I. Therein, we indicate for
each of the examined methods whether it is capable of reveal-
ing information about a MOP’s (1) globally efficient regions,
(2) locally efficient sets, (3) enclosing basins of attraction, the
dimensionality of the (4) search and (5) objective space that
can be visualized by the respective approach, as well as any
properties of the MOP’s (6) objective space or its (7) single-
objective components.

Looking at the decision space (of the exemplarily examined
bi-objective MPM2 function) as illustrated by the gradient field
heatmap, PLOT and local dominance landscape (see second
to fourth column of Figure 1), and by the set transition graph
(right image of Figure 2), one can observe a total of eight
disjoint efficient sets, with two of them being also globally

efficient and thus part of the Pareto set. Out of the four
techniques mentioned, all of which are suitable candidates
for visualizing a MOP’s local structures, only PLOT and the
set transition graph reveal the MOP’s globally efficient sets
or fronts as well. Yet, if the visualization’s primary purpose
is to gain insight into globally efficient sets (or fronts), the
cost landscape approach provides a promising alternative; its
color gradient, which illustrates the MOP’s underlying Pareto
ranking, facilitates the identification of non-dominated regions.

Interestingly, the efficient set on the top right of the MOP’s
decision space – as, e.g., shown in the heatmaps of Figure 1
and to a certain extent also in the multi-contour plot of Figure 2
(left image) – is partially dominated, resulting in two globally
efficient parts at both ends and an inferior segment in between.
Depending on the choice of the visualization method, such a
trait could potentially be misleading. For instance, methods
that focus exclusively on the MOP’s global structures (i.e.,
the Pareto set approximation depicted within the multi-contour
plot, as well as the cost landscapes) would highlight a total
of three (disjoint) efficient sets and users would have to guess
whether the sets are connected or not.

In line with the previous argumentation, it can be observed
that, in general, the gradient field heatmap, local dominance
landscape, and PLOT are very useful for revealing local struc-
tures like locally efficient sets and their accompanying basins
of attraction. However, with the exception of PLOT, those
methods have clear weaknesses when it comes to identifying
global structures. Due to the fact that the coloring of each
attraction basin is assigned independent of the information
from the other basins, all the basins look almost alike – and the
same holds true for the efficient sets. This makes it extremely
difficult to identify promising regions – or even the Pareto set
– in images produced by these techniques. For such a task,
the cost landscape and in particular PLOT would provide the
most valuable insights.

As one might notice, the set transition graph and the parallel
coordinates plot take a special role. Due to the graph structure
of the former, which naturally introduces a considerable com-
pression of the MOP’s landscape, it is much more difficult to
envision the structural (both positive and negative) properties
of the problem at hand using the set transition graph. On
the positive side, the set transition graph shows in a very
easy-to-understand way how easy or hard it is to reach the
different basins of attraction. Moreover, both approaches (i.e.,
the set transition graph and PCPs) scale with the MOP’s
dimensionality and thus can potentially be used to characterize
high-dimensional or many-objective problems.

Finally, our modified version of PCPs, i.e., local PCP, is the
only visualization technique to date that provides insight into
the local structures of MOPs with high-dimensional search
or objective space. As exemplified in Section V, local PCPs
indicate the location of a MOP’s local fronts (and sets, if
studied) per dimension of the objective (or search) space.
However, due to their compact and abstract representation of
the examined MOP, it is difficult to imagine the exact spatial
location of the associated fronts (or sets) using PCPs. Yet,
they enable the identification of the relevant areas within the
MOP’s objective (or search) space [50].
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TABLE I
SUMMARIZED VIEW AT THE PROPERTIES OF THE PRESENTED VISUALIZATION TECHNIQUES. FOR EACH PROPERTY, IT IS INDICATED WHETHER IT IS

SATISFIED (✓), PARTIALLY SATISFIED ( ) OR NOT SATISFIED (p) BY THE RESPECTIVE METHOD. NOTE THAT THE SCALING OF METHODS “PARALLEL
COORDINATES PLOT” AND “SET TRANSITION GRAPH” TO HIGHER DIMENSIONS (MORE THAN 3) WOULD IN PRINCIPLE BE POSSIBLE, BUT WOULD

REQUIRE ADDITIONAL ALGORITHMS THAT COLLECT THE NECESSARY DATA.

Visualization Global Locally Attraction Dimensionality Properties of
Technique Optimality Efficient Sets Basins X Y Obj. Space SO components

Cost
✓ p p 2-3 2-3 ✓ pLandscape [17]

Multi-Contour   
p 2 ≥ 2 p ✓Plot [49] If overlaid If overlaid

Gradient Field
p ✓ ✓ 2-3 2-3 ✓

 
Heatmap [19] Pos. of local optima

PLOT [21] ✓ ✓ ✓ 2-3 2-3 ✓
 

Pos. of local optima

Local Dominance
p

  
2-3 2-3

 
pLandscape [29] Approx. Approx. Approx.

Parallel Coordinates
✓

p (Global PCP)
p ≥ 2 ≥ 2

 
pPlot ✓ (Local PCP) Limited Extend

Set Transition    ≥ 2 ≥ 2
 

pGraph Per LE set Schematically Size, Interactions Limited Extend

3D Visualizations

Scatter Plot of
✓ p p 3 2-3 ✓ pNondominated Points

MRI Scan [24] ✓ ✓ ✓ 3 2-3 ✓
 

Pos. of local optima

Onion Layers [24] ✓ ✓ ✓ 3 2-3 ✓
 

Pos. of local optima

D. Interactive 3D Visualization

Another limiting factor for visualizing MOPs has been
the restriction to static, planar visualizations. In such cases,
plotting MOPs with three dimensions in search or objective
space was hardly imaginable as the points along the boundaries
of the respective space would cover all inner points. How-
ever, by using the interactive functionalities of the dashboard
presented below, we enhanced all the techniques illustrated
in Figure 1 (i.e., the ones described in Section III-A, except
for the multi-contour plot) such that they can also be used
for visualizing three-dimensional spaces. To achieve this, we
use two approaches – called “MRI Scan” and “Onion Layers”
– that were recently introduced in related work [24]. Note
that within this work, we extend their application to the local
dominance landscapes proposed by Fieldsend et al. [29]. By
computing the necessary data, such as neighborhood domi-
nance relationships, in three dimensions and applying one of
the following 3D visualization techniques, we extend their
technique to three decision space dimensions for the first time.

The first 3D technique uses an MRI-like procedure that
enables a scan of the volume of interest (e.g., the PLOT
visualization of a MOP with a three-dimensional search space)
by interactively slicing the respective 3D cube. An exem-
plary MRI scan based on PLOT is illustrated for the three-
dimensional Aspar function [24] in Figure 4.

As alternative to the MRI scan, we provide an interactive
visualization based on 3D isosurfaces. These allow to interac-
tively add and/or remove a MOP’s domination layers similar

to ‘peeling off’ the layers of an onion – hence, we denoted it
the ‘Onion Layer’ approach. An exemplary illustration can be
seen in Figure 7, which depicts a three-dimensional instance
of the SGK problem [21] using this Onion Layer method.

The properties of the two interactive visualization methods
discussed herein are also listed in Table I. It should be noted,
though, that their ability to show global and local structures
essentially depends on the choice of the underlying heatmap
method. That is, an MRI scan of a three-dimensional local
dominance landscape visualization is still unable to reveal
global optimality. Similarly, three-dimensional interactive ver-
sions of cost landscapes remain unsuitable for examining
locally efficient sets or basins of attraction. However, using
a suitable approach for the desired purpose, these interactive
heatmap cubes enable investigations of the respective global
and local structures for three-dimensional MOPs.

Finally, we should also mention the “classical” 3D visualiza-
tion, in which (only) the nondominated solutions of the sample
are displayed through scatter plots in the search and objective
space, respectively. We collected and implemented all of
the discussed visualization techniques in our visualization
dashboard, which we will discuss next.

IV. THE MOPLOT DASHBOARD

The previous section presented a multitude of visualization
techniques for continuous MO landscapes. However, the study
of existing benchmark problems or application of the visual-
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Fig. 4. A screenshot of the moPLOT dashboard demonstrating the PLOT visualization with the MRI Scan 3D approach. The shown function is the 3-parameter
2-objective Aspar function [24]. While the problem has two locally efficient sets, which are shown permanently, the non-optimal set intersects the attraction
basin of the globally optimal one. This is shown by the selected x3-slice of the gray-scaled gradient field heatmap, which can be interactively moved by the
user.

izations on novel problems, e.g., from practice, requires good
software support.

In particular, all visualization techniques should be imple-
mented in the same software package to enable a comparable
application of them on the given test problems. Further, a
wide range of benchmark suites should be available for direct
visualization to enable a thorough study of known benchmark
problems, with a possibility to incorporate further test prob-
lems by extension mechanisms. Finally, it should enable also
novice users to create and study visualizations in a seamlessly
accessible environment.

So far, individual implementations of the visualizations, like
accompanying code together with their original publications,
rely on a range of software environments (such as R and
Matlab). Others need to be implemented by users themselves
as there is no standard implementation. This is the case for
the contour and cost landscape visualizations. This limits their
applicability for novice users and hinders the comparison of
landscape structures in the context of benchmarking.

For a few dedicated benchmarks, however, there exist web-
sites4, which provide visualizations of their test problems. For
the bi-objective BBOB an almost comprehensive overview of
available decision space visualizations is available, plus some
visualization techniques focused on dimensionality reduction.
However, the visualizations are limited to the bi-objective

4https://numbbo.github.io/bbob-biobj/

BBOB problems and visual comparisons to further benchmark
suites cannot be drawn. Additionally, novel problems cannot
be visualized interactively, which limits the scope of this
approach.

The here presented moPLOT dashboard aims at providing a
solution for this problem. An initial version of this software
has already been published within a conference paper [24].
Therein, we have implemented all the visualization methods
that were published at that time (including the interactive
components) and embedded them into an interactive web
application. It enables (i) the selection of a test function from a
variety of benchmark problems and (ii) the upload of external
test data for visualizing novel problems. We herein refined this
implementation of moPLOT by extending it with, among other
things, the new methods presented in Section III-B.

Common benchmark suites such as the Extended Bi-
objective BBOB [51], DTLZ [9], ZDT [8], MMF (CEC 2019)
[13], MOP [52] and combinations of MPM2 [53] functions are
integrated directly into the dashboard. In addition, a variety
of individual test functions which are commonly used in the
literature or which are useful for demonstrating particular
landscape properties, such as the Aspar [21], Kursawe [6],
SGK [21], Viennet [7] and Bi-Rosenbrock (see Section V)
functions, are available.

A publicly accessible version of the dashboard is hosted on-
line on https://schaepermeier.shinyapps.io/moPLOT. For im-

https://numbbo.github.io/bbob-biobj/
https://schaepermeier.shinyapps.io/moPLOT
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Fig. 5. Overview of decision space visualization techniques (top) with corresponding visualizations in objective space (bottom) for the Bi-Rosenbrock problem.
Visualizations from left to right: Cost landscape [17], gradient field heatmap [19], PLOT [21] and local dominance landscape [29].

plementation details, we refer to [24] and the source code,
which is available at https://github.com/kerschke/moPLOT.

Figure 4 demonstrates the user interface of the moPLOT
dashboard with an example of the 3D MRI Scan visualization.
In the upper left drop-down menu, a test function can be
selected (and parameterized in many cases). Subsequently it
will be evaluated on a grid of points to generate the necessary
data for the MOP’s visualization. Alternatively, the grid data
may be uploaded in CSV format in the second tab. For this
purpose, the user can evaluate a real-world problem, novel
benchmark or surrogate function on a self-defined grid of
points outside of the dashboard. The obtained data set of
decision and objective space values can then be uploaded
to the dashboard for visualizing the underlying landscape.
A corresponding download functionality is also included for
expensive to evaluate functions. Once evaluated and plotted,
the results can be exported and later reloaded when needed for
another visualization. Then, on the lower part of the left side
panel, individual visualization groups may be enabled. More
importantly, they can also be disabled, e.g., if they are too
costly to compute (as is the case for the cost landscape for
high resolutions) or not of interest in an individual use case.

The right hand side then provides access to all implemented
(and enabled) visualizations. Here, the user can, for instance,
select whether to show the decision or objective space (or
both), if supported by the chosen visualization. Further options
may also be presented underneath the visualization area. These
most notably comprise options regarding the 3D approach in
the case of a three-dimensional decision space.

V. USAGE SCENARIOS

This section presents four usage scenarios [54], which
demonstrate how the visualizations (see Section III) and dash-

Fig. 6. Additional visualizations on the Bi-Rosenbrock problem. Top row:
Multi-contour plot with superposed Pareto set (left) and set transition graph
(right). Bottom row: Global PCP (left) and local PCP (right). The set transition
graph (upper right) clearly shows the mutual superposition of the two locally
efficient sets.

board (see Section IV) can be used for comparison, exploration
and analysis of multi-objective optimization problems.

A. A Bi-Rosenbrock Problem

In this first scenario, we consider a particular two-
dimensional Bi-Rosenbrock problem, whose component func-

https://github.com/kerschke/moPLOT
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Fig. 7. Selected visualizations of the three-dimensional SGK problem. Left: 3D visualization of locally efficient sets in decision space. Middle: One step of the
interactive Onion Layer visualization of attraction basins in decision space from the same viewpoint. Right: Set transition graph. The two basin intersections
modeled by the set transition graph are clearly visible in the middle visualization. The fully filled circle corresponding to the globally efficient set indicates
that all local search runs would be successful on this problem, even though it contains three locally efficient sets.

Fig. 8. PLOT visualization with the MRI Scan technique and set transition graph of a three-dimensional problem from the bi-objective BBOB (FID: 10, IID:
12). While the analysis of the basin intersections is essentially impossible due to the overload of information in the PLOT visualization, some information can
still be gathered from the set interaction graph: There are three locally efficient sets contributing to the Pareto set, where one is reachable from any starting
point while the others might require multiple restarts to find.

tions are given by f1(x1, x2) = (1 − x1)
2 + (x2 − x2

1)
2 and

f2(x1, x2) = (1+x1)
2+(−(x2−3)−x2

1)
2, respectively. This

essentially results in two copies of the same landscape rotated
by 180◦. The previously discussed landscape visualizations for
this problem are given in Figures 5 and 6.

We observe, particularly in the GFH and PLOT visualiza-
tions, that there are two locally efficient sets that intersect each
other. Assuming a local search algorithm which first discovers
only one efficient set by simple multi-objective gradient de-
scent, it can subsequently explore along that connected set and
finally cross the ridge into the second basin of attraction. There
it finds the second locally efficient set and thus also the second
part of the global Pareto set during this process. That is, the
given Bi-Rosenbock problem features multiple locally efficient

sets and a disconnected Pareto set, but can be solved optimally
from any starting point by a local search algorithm. Note that
this property is only shown in the more recent visualization
techniques. In fact, the cost landscape, the contour plot, and
in this case even the local dominance landscape would not
lead to the mentioned conclusions. Finally, while the PCP
visualizations may show some properties of the objective space
– or the local PCP even properties of the individual locally
efficient fronts – they are unable to demonstrate local search
dynamics at all.

This demonstrates that complex multi-objective benchmark-
ing landscapes with very specific problem structure may
even arise from two rather simple, unimodal single-objective
functions. Their interaction, characteristics, and challenges (or
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Fig. 9. Visual comparison of different instances (IIDs left to right: 5, 10, 13 and 15) of the 10-th function from the Bi-Objective BBOB in the PLOT
visualization in decision and objective space, as well as the set transition graph. While the different instances of a function in the BBOB should have
comparable properties, and they are all shown to contain many locally efficient sets, the visualizations reveal that other properties can vary greatly: The Pareto
set may be connected (IID 3), or disconnected in many (IIDs 10, 13) or only two sets (IID 15). In addition, the Pareto front may be connected (IIDs 1, 13)
or disconnected (IIDs 10, 15). The set transition graph finally shows that some Pareto set components may be hard to reach by local search as well (IIDs 10,
13).

simplicity) for certain types of solvers are only revealed, if we
apply an adequate visualization technique.

B. 3D Visualization

As a second example, the dashboard’s suitability for ana-
lyzing a three-dimensional MOP are highlighted. The three-
dimensional SGK problem [21] is given by two objectives,
one of them being unimodal, the other one being trimodal.
Selected visualizations are shown in Figure 7.

Each of the locally efficient sets is superposed by the
attraction basin of a dominating set, leading a local solver to
reliably discover the globally efficient set out of the three sets.
This property is reflected perfectly by the set transition graph,
which uses a stress-based graph layout due to the higher search
space dimensionality, and shows a fully filled green node for
the globally efficient set.

Finally, Figure 8 shows an example with a more complex
three-dimensional landscape. Due to the large amount of
locally efficient sets, visually analyzing the resulting landscape

in the MRI scan for PLOT (left-hand side) becomes a very
tedious task. In this case, the set transition graph allows some
further and simplified analyses, including the observation of
three locally efficient sets (represented by green nodes), which
contribute to the Pareto set. We also observe that one of the
sets is reachable from any starting point, as denoted by the
completely filled green node in the graph.

C. Analyzing Bi-Objective BBOB Functions

Two-dimensional visualizations can also aid in the design
and analysis of a benchmark suite with poorly-understood or
unknown properties. We demonstrate this exemplarily for dif-
ferent instances of the 10th function from the two-dimensional
Bi-Objective BBOB [16] using the PLOT and set transition
graph visualizations, which are depicted in Figure 9. This
test problem consists of a sphere function for the first and a
(rotated) Gallagher’s 101 peaks function, which is multimodal
without global structure, for the second objective.
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Fig. 10. Visual comparison of multimodal benchmark functions from literature: The benchmark functions (left to right) DTLZ1 [9], ZDT3 [8], MMF4 [13]
and SYMPART-rotated [55] are shown with the (top to bottom) PLOT, set transition graph, and local PCP visualizations.

While the test functions in this benchmark are constructed
from well-understood component functions from the BBOB
suite, the resulting instances may have properties that are
unknown beforehand and which can vary greatly across in-
stances. As demonstrated in Figure 9, the shown instances are
all multimodal by featuring many locally efficient sets. At the
same time, the Pareto set and front may be disconnected or
connected, and those may be either easy or hard to find by
local search runs. Understanding these properties by means of
(combinations of) appropriate visualization techniques (e.g.,
PLOT combined with transition graphs) may help to better
understand algorithm behavior and performance on different
instances, supporting benchmark designers to construct bench-
mark suites with well-understood properties and algorithm
designers to get a better picture of (local) search dynamics
of the problem instances within a benchmark. In the end, this
could pave the way to developing novel algorithmic concepts.

D. Multimodality in Classical MO Benchmarks

In the final usage scenario, we show how visualizations can
support the comparison of functions across different bench-
mark problems. Here, we focus on well-known multimodal

functions from literature, in particular the DTLZ1 [9], ZDT3
[8], MMF4 [13] and SYMPART-rotated [55] functions (see
Figure 10).

The PLOT and set transition graph visualizations highlight
that many of the shown test functions do not feature set
interactions at all. As only exception, ZDT3 has a very simple
set interaction graph, in which the sets are essentially chained
to each other. This chaining leads to a globally efficient set that
is guaranteed to be found (at x1 ∈ [0.00, 0.10]), while the two
rightmost sets – the globally efficient set at x1 ∈ [0.75, 0.85],
and the locally efficient set at x1 ∈ [0.95, 1.00] (constituting
the start of the chain) – may be hard to find. Another trend
in benchmark design is to design problems, which are purely
multi-global [5], such as the shown SYMPART-rotated [55]
problem. These problems only comprise locally (and simul-
taneously globally) efficient sets that are isolated from each
other, and do not contain local search traps that are not glob-
ally efficient. The focus of such problems is on multimodal
MO optimization, i.e., searching for multiple well-distributed
solutions (in the search space) that result in comparable values
in the objective space. However, these properties are distinctly
different from the local search properties of, e.g., the Bi-
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Objective BBOB and MPM2 functions visualized above. One
should thus be careful to generalize results of algorithms
evaluated only on a limited set of problems.

Finally, the local PCP visualizations here are shown using
the decision and objective space values. The usefulness for
multimodal problems is best shown for the DTLZ1 and
SYMPART-rotated problems. Next to the objective space
properties, local PCP can illustrate the different placements
of the locally efficient sets in decision space.

VI. CONCLUSION

In this work, we presented a comprehensive overview of
visualization techniques for multi-objective optimization prob-
lems (MOPs). Beyond techniques that enable the depiction of
MOPs with two-dimensional decision and objective spaces, we
(a) presented two three-dimensional interactive visualization
techniques and (b) introduced two novel approaches that adapt
and refine the concepts of established visualization methods
(PCPs, as well as LONs or PLOS-nets) and thereby pave the
way towards visualizing high-dimensional and many-objective
problems. In addition, we presented an updated version of
an integrated and web-based dashboard, named moPLOT, for
seamlessly accessing the visualizations and enabling interac-
tive analyses of test problems – even for users without a
programming background. Finally, the usefulness and com-
plementarity of the presented visualization techniques, and
the analyses enabled by them, were demonstrated in a series
of usage scenarios in which several challenges in the context
of benchmarking MOPs were discussed on the one hand and
revealed in the corresponding landscape visualizations on the
other hand.

In addition, we have demonstrated that the benefits of the
different visualization techniques are manifold for researchers
of the benchmarking community and beyond:

1) A wide selection of visualization techniques provides a
variety of perspectives on benchmark problems for their
designers. Visual analyses enable benchmark designers to
describe the challenges of their problems and to classify
these problems adequately.

2) The various visualization methods – made accessible
using the dashboard – enable the comparison of already
existing benchmark problems from established bench-
mark suites. Also, the updated dashboard provides the
functionalities to visualize custom and real-world prob-
lems and visually compare them to existing benchmark
suites without the need for specific function definitions.

3) Beyond that, decision space-focused visualizations of
MOPs enable more profound analyses of landscape prop-
erties for algorithm designers, helping them to gain new
insights into the characteristics and the challenges of their
(benchmark) problems. These insights enable the devel-
opment of new search principles – almost as intuitive as
in the single-objective case. For first examples, see [22],
[25], [48], [56].

Finally, the improved understanding of landscape properties
may boost research in benchmarking towards understand-
ing search dynamics [5], [57], development of informative

landscape features [58]–[60], as well as automated algorithm
selection [61] in future work. A further perspective for future
work is provided by the challenge of adapting the novel
scalable visualization techniques to higher-dimensional spaces
– including the visualization of many-objective problems [62].
While the set transition graph and local PCP are, in principle,
scalable to an arbitrary dimensionality, the currently imple-
mented framework relies on a densely evaluated grid of points,
whose scalability is limited by the curse of dimensionality.
Using these visualizations on real-world problems that only
allow for sparse evaluations presents another future research
direction. This may be accomplished by a number of different
techniques, such as surrogate models built on the evaluated
points [63]. Currently, pre-processing on the evaluated points
is required to ensure that a sufficiently dense grid is sampled
for the approaches presented in this work.
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