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Lennart Schäpermeier1[0000−0003−3929−7465],
Pascal Kerschke1[0000−0003−2862−1418], Christian Grimme2[0000−0002−8608−8773],

and Heike Trautmann2[0000−0002−9788−8282]

1 Big Data Analytics in Transportation, TU Dresden, Germany
{lennart.schaepermeier,pascal.kerschke}@tu-dresden.de

2 Data Science: Statistics and Optimization, University of Münster, Germany
{christian.grimme,trautmann}@uni-muenster.de

Abstract. The design and choice of benchmark suites are ongoing top-
ics of discussion in the multi-objective optimization community. Some
suites provide a good understanding of their Pareto sets and fronts, such
as the well-known DTLZ and ZDT problems. However, they lack di-
versity in their landscape properties and do not provide a mechanism
for creating multiple distinct problem instances. Other suites, like bi-
objective BBOB, possess diverse and challenging landscape properties,
but their optima are not well understood and can only be approximated
empirically without any guarantees.
This work proposes a methodology for creating complex continuous prob-
lem landscapes by concatenating single-objective functions from version 2
of the multiple peaks model (MPM2) generator. For the resulting prob-
lems, we can determine the distribution of optimal points with arbitrary
precision w.r.t. a measure such as the dominated hypervolume. We show
how the properties of the MPM2 generator influence the multi-objective
problem landscapes and present an experimental proof-of-concept study
demonstrating how our approach can drive well-founded benchmarking
of MO algorithms.

Keywords: Multi-objective Optimization · Multimodal Optimization ·
Numeric Optimization · Benchmarking · Problem Generator.

1 Introduction

In order to adequately understand problem hardness and to specifically tailor
algorithmic approaches with respect to the criteria characterizing different facets
and levels of difficulty in multi-objective (MO) optimization, comprehensive and
carefully designed benchmark sets are an essential prerequisite [1].

An MO benchmark suite ideally should be a) comprehensive with regard
to the representativeness of relevant real-world problems, b) scalable regard-
ing both decision and objective space dimensionality, c) capable of covering the
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most important characteristics of MO landscape properties in relevant combi-
nations, d) extendable in size by providing a means to specifically generate a
desired number of problem instances with certain landscape characteristics, and
most importantly e) well understood by providing analytical expressions of both
Pareto front (PF) and Pareto sets (PS), ideally including local structures.

However, meeting all these requirements is an extremely challenging MO
problem (MOP) by itself, and we have to aim for optimal trade-off solutions.
In single-objective (SO) optimization, BBOB [13] presents a benchmark suite
that ticks off many boxes of the previously stated wish list such that, e.g., it is
well understood in terms of problem difficulties, optima are known, an arbitrary
number of instances per problem type can be generated, and scalability regarding
decision space dimensionality is provided. Moreover, a standardized algorithm
evaluation procedure exists, which is widely accepted within the community. The
community, however, is still largely debating on a).

In MO optimization, there is, unfortunately, no straightforward counterpart.
While real-world representativeness is also an issue in this domain, we are specif-
ically concerned about items d) and e) as critical issues. In our view, existing
benchmark suites turn out to be either not challenging enough, if PF and PS
are known analytically (e.g., ZDT [29] and DTLZ [7]), or extremely challenging
if requirement e) is omitted as, e.g., in the bi-objective BBOB [25]. Specifically,
algorithm performance evaluation is very challenging as no ground truth ex-
ists for comparison. Also, item c) cannot be assessed properly as MO landscape
characteristics can only be empirically and heuristically approximated.

This paper concentrates on the MPM2 generator [27,26] and on an MO
benchmark set creation concept based thereon [16]. We will show that we can
largely contribute to understanding MOPs by providing a method for deriving
both PS and PF analytically and allowing for the approximation of optimal
Hypervolume (HV) up to an arbitrary precision. Thereby, a ground truth is
provided in combination with MPM2 being flexible regarding the generation of
different types of landscape structures and problem characteristics. So far, we
concentrate on continuous bi-objective MOPs as proof-of-concept while on top
simultaneously illustrating generalization and scalability potential.

We start by giving some background on MO benchmark suites and algo-
rithms in Section 2. Then, in Section 3, we introduce our methodology first for
individual pairs of unimodal functions and subsequently for multiple peaks. This
is followed by a proof-of-concept experimental study showing problem proper-
ties and algorithm performances in Section 4. Section 5 concludes this work and
comments on future research perspectives building on our methodology.

2 Background

Before diving into our methodology, we will start by introducing some back-
ground on MO benchmark suites, in particular the MPM2 generator, and the
MO optimizers utilized in the experimental section later in this work.
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MO Benchmark Suites In a recent survey on continuous multimodal MO op-
timization [12], existing MO benchmark suites were discussed both in general as
well as with a dedicated focus on multimodality. Therein, it has been concluded
that the existing benchmark problems usually fall into one of two categories.
The first group comprises hand-crafted MOPs with well-understood structural
landscape properties, including analytically defined PSs. Typical representatives
of this collection are historically well-established test suites such as DTLZ [7]
or ZDT [29]. However, a severe limitation of these MOPs is, from a multimodal
perspective, their lack of challenging landscape structures, as visually demon-
strated in [22,19,20]. Likewise, the MOPs of the recently proposed MMF test
suite [28] primarily exhibit extremely regular patterns; yet, structurally diverse
problems are crucial for meaningful algorithm benchmarking [1]. Moreover, the
scalability of the aforementioned MOPs is limited w.r.t. their number of optima
and dimensionality of the decision space.

The second group of benchmark problems comprises suites based on con-
catenations of SO benchmark functions, like the bi-objective BBOB [25]. These
problem collections are usually scalable in dimensionality and they contain more
diverse MOPs with potentially complex landscapes due to the flexible concate-
nation of functions. Yet, these benefits come at the cost of poorly understood
structural properties. For instance, although the global optima of the SO BBOB
functions are analytically known [13], the PS of the corresponding bi-objective
BBOB instance must be empirically approximated.

After comparing the strengths and weaknesses of the existing MO benchmark
suites, it became evident that our community is currently lacking a sophisticated
problem generator, which is capable of constructing a scalable, comprehensive,
and diverse set of multimodal MOPs with known landscape structures.

To fill this gap, we herein utilize Wessing’s Multiple Peaks Model (MPM2)
generator [27,26] for generating SO functions with configurable topologies and
scalable dimensionality. Each of these SO functions is essentially the minimum
of a configurable number of individual peak functions, i.e., unimodal functions
with ellipsoidal structure, aligned in one of two topologies: funnel or random.
The funnel type contains a large funnel in which all optima are grouped around
a global optimum, such that the depth per peak decreases with increasing dis-
tance from the global optimum. In contrast, the random type distributes the
depths and locations of local optima uniformly across the search space. The im-
plementation of the MPM2 generator allows us to extract valuable information
about each of the underlying peaks, such as the covariance matrix, radius, and
height properties, which we will later use as a basis for identifying the PS of the
generated MOPs. Finally, note that the decision space of a d-dimensional MPM2
problem is usually [0, 1]d and that objective values are restricted to [0, 1].

Similar to [16], we create bi-objective benchmark problems by concatenating
functions generated with MPM2. Consequently, the resulting MOPs tend to be
part of the second category of benchmark problems. Still, due to its modular
composition of multiple peaks, we can generate configurable and scalable MOPs
with known PSs (see Sec. 3). Despite their relatively simple components, the
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landscapes of the MOPs generated with this approach do not necessarily exhibit
simple, regular patterns, which are easy to exploit by an algorithm. Instead,
our approach enables the creation of diverse test functions with irregular, non-
separable landscapes, convex, concave, and/or split (globally or locally efficient)
PFs. The respective decision spaces also offer a variety of structural challenges
(see, e.g., Fig. 3). Our approach thus provides a valuable framework for creating
various configurable and scalable MOPs that will be useful for meaningfully
benchmarking MOEAs and studying their strengths and weaknesses.

Algorithms Next to classical MOEAs such as NSGA-II [6] and SMS-EMOA
[10], which focus on the approximation of globally optimal solutions and conver-
gence in objective space, specific MOEAs exist, which are explicitly suited for
overcoming obstacles of multimodal MOPs and for exploiting local structures. A
comprehensive overview of different MOEA categories, including multimodality
aspects both from a multi-local and multi-global perspective, is given in [12,23].

Herein, we focus on specific MOEAs like Omni-Optimizer [8] and MOLE [21].
These approaches were shown to be more competitive than classical MOEAs
w.r.t. convergence in objective space while simultaneously ensuring diversity in
decision space [18,14]. Omni-Optimizer is conceptually similar to NSGA-II but
additionally comprises a diversity preservation strategy in decision space. It is
thus applicable to various types of MOPs. MOLE, however, is a gradient-based
MO optimizer that actively explores and traverses locally efficient sets. Thereby,
it exploits interactions between their respective basins of attraction for a directed
descent towards dominating local (or even global) sets.

3 On the Pareto Set of Multiple Peaks Functions

As outlined in Sec. 2, MPM functions essentially take the minimum of multiple
individual peak functions, whose shape and placement are up to the generator.
Using the MPM2 generator, the individual peak functions obtain ellipsoidal level
sets, which makes them approachable using analytical techniques. We will first
illustrate how the PS of two unimodal peak functions can be derived and then
discuss how this analysis scales with increasing numbers of peaks per function.

Bi-Objective Convex-Quadratic Problems A theoretical analysis of the PS
between individual peak functions stemming from the MPM2 generator has been
conducted before in [16]. Here, however, we base our discussion on the results
of [24], which focus on bi-objective convex-quadratic problems. Consider the
following bi-objective convex-quadratic problem F (x) with search space X = Rd:

F (x) = (f1(x), f2(x)) → min! with fi(x) =
1

2
(x− x∗

i )
THi(x− x∗

i ), i = 1, 2,

where x∗
1, x

∗
2 ∈ Rd are the global optima of f1 and f2, respectively. Likewise,

H1, H2 ∈ Rd×d are positive definite symmetric Hessian matrices determining
the shape and orientation of the quadratic functions.
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For convex quadratic functions, the position of the global optimum is de-
termined by the singular point at which the gradient equals the zero vector.
Further, the PF of two convex quadratic problems is convex [11], which enables
us to express all globally optimal points by linear interpolation between the
problems using a parameter t ∈ [0, 1]:

Ft(x) = (1− t)f1(x) + tf2(x) → min!

⇒∇Ft(x) = (1− t)∇f1(x) + t∇f2(x) = 0

(1− t)H1(x− x∗
1) + tH2(x− x∗

2) = 0

[(1− t)H1 + tH2]
−1[(1− t)H1x

∗
1 + tH2x

∗
2] = x

In the work of [24], some additional results are shown, e.g., monotone objec-
tive transformations do not impact the placement of the PS, while PF properties,
such as its shape, can be adjusted. As the peaks resulting from MPM2 constitute
a convex quadratic function to which a monotone transformation is applied in
the objective space only, the above analysis also describes the PS of a bi-objective
unimodal peak function. Finally, note that this does not guarantee that the PS
is contained within the usual [0, 1]d bounding box for MPM2 problems and the
decision space boundaries may need slight adjustment when this unconstrained
PS should still be reachable.

Multiple Peaks While we can only describe the PS analytically given a com-
bination of two unimodal peak functions, we can leverage this knowledge for
constructing the PS of bi-objective MPM2 problems. The first necessary insight
is that this specific PS has to be a subset of the theoretical PSs which are gen-
erated by an exhaustive combination of each pair of peaks, cf. Figure 1.

This leaves us with considering all pairwise peak functions, i.e., one peak
per objective, and their respective PSs, cf. Figure 1a. While new locally efficient
solutions cannot be generated, some of the analytical PSs may become partially
or completely inactive because of being dominated by objective values of another
peak combination. Additionally, they may become globally dominated by the
PSs of other peak pairs, thereby creating complex local and global interactions.
Considering the example in Figure 1b, the blue set (corresponding to the bottom
left image in Figure 1a) is completely inactive, while the red and violet sets are
partially inactive, and only the green set stays fully active. These dynamics are
mirrored in the PLOT visualization (see bottom right image in Figure 1b) [19],
which only depicts the (local) PSs and PFs, respectively.

While these local dynamics can become very complex, it is not necessary to
study them in detail, if one is only interested in deriving the PS and PF, i.e., the
globally efficient points. We propose a simple, numerical procedure for deriving a
set-based approximation building on the analytical description of the PSs of the
peak pairs (see Figure 2). As a target, we choose to approximate the dominated
hypervolume (HV) w.r.t. the reference point (1, 1). We start by evaluating evenly
spaced points w.r.t. the parameter t for each of the pairwise theoretical fronts.
In our implementation, the minimum resolution is 4 points per set.
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(a) Pairwise peak combinations and corresponding Pareto sets in dec. and obj. space.
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(b) Left: Active (solid) and inactive (dashed) sets of the combined MPM2 problems.
Sets are inactive if they are dominated by another pair of peaks. In the objective space,
the inactive theoretical sets are printed semi-transparently. Right: PLOT [19] visual-
ization, showing locally efficient sets (in color) and attraction basins (in grayscale).

Fig. 1: Here, we demonstrate the effects of combining individual peak functions
to one MPM2 problem on the Pareto set. The exemplary problem consists of
two peaks per objective with a random topology and seeds 667172 and 540835.

For each set, we then individually compute the best possible intermediate
points, i.e., the minimum of two consecutive points, that could still be contained
within the set without dominating any other point in it. When interpolating on
the same (theoretical) set, no more dominant points could be found, making the
intermediates the most optimistic estimate between two adjacent points from a
set. The (relative) HV gap is then given by the difference (percentage) of the HV
dominated by i) the best possible intermediates, and ii) the actually evaluated
points. This process is repeated with doubled resolution until the HV gap reaches
a sufficiently small target value. To save on evaluations, sets whose best possible
intermediates are fully dominated by the union of all evaluated points so far can
be excluded in the respective iteration, as they cannot contribute to the PF.

Although we can pessimistically estimate the computational complexity pro-
portional to the number of initial theoretical Pareto sets times the inverse of the
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Fig. 2: Left: Illustration of the hypervolume gap (light shaded area) for the green
front of the problem shown in Figure 1. Middle: The hypervolume gap (gray
area) for a resolution of 4 points per set, where the black points denote the
nondominated points from the best possible intermediates for each set. Right:
The same gap for a resolution of 16 points per set. Note that the red and blue
sets could be excluded as they cannot contribute to the Pareto front.

target gap, practical computations become surprisingly efficient. This is due to
the observation that many of the theoretical local sets can be excluded early.

4 Experimental Study

In the following proof-of-concept study, we (1) demonstrate the properties of
the proposed test suite subject to its main parameters and (2) conduct first
performance analyses of several standard and multimodality-affine solvers.

Setup We created a total of 1,280 problems using the following configura-
tion: We select the search space dimensionality d ∈ {2, 3, 5, 10} to cover an
increasing but still manageable decision space. The number of peaks np ∈
{1, 2, 4, 8, 16, 32, 64, 128} per MPM2 function is exponentially scaled to enable
analyzing the influence of SO multimodality on a log-scale. Note that np coin-
cides for both constituent MPM2 functions to obtain a meaningful amount of un-
ambiguous classes for further analyses. The same rationale applies to the topol-
ogy, i.e., we select a specific topology parameter t ∈ {funnel, random} for both
problems simultaneously. Finally, we choose the random seeds s ∈ {1, . . . , 20}
for the first objective, while the seed for the second objective is always set to
s+1,000. For all problems, we then approximate the HV of the PF to a relative
gap of at most 10−4, i.e., we have an uncertainty of less than 0.01% about the
optimal HV of each problem. This approximation takes at most a few seconds
per problem. We set the decision space boundaries to [−0.2, 1.2]d, ensuring all
Pareto sets are fully included.

To obtain the problem characteristics and to optimize the HV, we extract the
parameters for all peaks of the MPM2 problems using an interface implemented
in the R-package smoof [4]. Our experiments and analyses are also conducted in
R and can be found at https://github.com/schaepermeier/2023-emo-mpm2.

https://github.com/schaepermeier/2023-emo-mpm2
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We run the algorithms introduced in Sec. 2 using an interface to the C im-
plementations of NSGA-II and Omni-Optimizer provided by the mco [17] and
omnioptr [5] packages, respectively. Further, we rely on the default implementa-
tion of SMS-EMOA provided by the ecr package [3]. Note that it uses random
parent selection rather than the tournament scheme implemented in NSGA-II
and Omni-Optimizer, which has to be taken into account in the experimental
evaluation. We use MOLE with random uniform starting points as provided by
the moleopt package in the default configuration, but setting its internal HV
target parameter to 10−3, to reduce time spent refining already found solutions.
All MOEAs have their population set to 100, which is a common default.

We run all algorithms for 10,000 evaluations, i.e., 100 generations for NSGA-
II and Omni-Optimizer. As performance measure, we consider the dominated
HV w.r.t. the reference point (1, 1) provided by the archive of evaluated points.
For performance reasons, we compute the achieved HV every 100 function eval-
uations. We perform 15 repetitions per combination of problem and algorithm
to ensure statistically reliable results.

Analysis of Problem Properties To illustrate interesting properties of the
generated problems, we perform two separate analyses: We start by visualizing
two-dimensional problem landscapes to visually show the impact of the degrees
of multimodality and the two problem topologies. We then focus on problem
characteristics in objective space when scaling the search space dimensionality.

Figure 3 shows PLOT [19] visualizations of two-dimensional bi-objective
problems generated with funnel and random topologies for 2, 8, 32, and 128
peaks, respectively. Here, it can be observed that the degree of multimodality
greatly increases with the number of peaks used in the individual problems, as
demonstrated by the number and location of visualized locally efficient points.
Although the problems with lower multimodality still seem somewhat similar
between topologies, varying distribution of the locally and globally efficient sets
becomes apparent with an increasing number of peaks. The funnel problems tend
to cluster the globally (and to an extent locally) efficient points, while the ran-
dom problems show a much higher dispersion in the decision space, with many
smaller areas contributing to the (global) PS. These representative problems
also show a distinctive property in objective space: In random topologies the PF
rapidly approaches the ideal point (0, 0) with increasing number of peaks, while
respective closeness is limited in the funnel topology.

Figure 4 visualizes the influence of generator parameters on PS properties.
On the one hand, across dimensions and topologies, we can see that the number
of locally efficient sets contributing to the Pareto set increases with the num-
ber of peaks. However, this effect decreases with increasing dimensionality and
differences between the topologies in this regard almost vanish. Further, the ap-
proximated HV increases with the number of peaks. While it approaches the
maximum possible HV of 1 for the random topology, funnel problems demon-
strate a much wider range of HV values and a slower increase with the number
of peaks. Again, the effect diminishes with increasing dimensionality.
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(a) Problems with funnel topology in decision (top) and objective space (bottom).

(b) Problems with random topology in decision (top) and objective space (bottom).

Fig. 3: PLOT visualizations of problems with 2, 8, 32 and 128 peaks per objective
(left-to-right) for funnel and random topologies. All problems use seed s = 1.

Finally, Figure 5 shows properties of the locally and globally efficient fronts,
exemplarily for the random topology, with increasing dimension. Here, we can
see that, using otherwise identical parameters, the PF is becoming more con-
cave within our generator framework. This seems to be a property of the peak
function, and should be investigated in detail in the future.

Algorithm Comparison Based on our knowledge of optimal HV values and
regularly conducted HV evaluations during the optimization process, we can
generate convergence plots as exemplarily provided in Figure 6 for 5D prob-
lems. It depicts the mean relative hypervolume gap, i.e., the mean percentage
of hypervolume not yet covered, per problem w.r.t. function evaluations. Sev-
eral insights can be gained: Firstly, problem hardness tends to increase with an
increasing number of peaks per problem. This is particularly noticeable for the
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Fig. 4: Left: Number of local sets that contain globally efficient solutions. Right:
Computed HV of PS. Rows indicate problem dimensionality, d ∈ {2, 3, 5, 10}.
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Fig. 5: Locally and globally efficient fronts for the problem with 32 peaks, s = 1
and random topology for dimensions 2, 3, 5, and 10. Higher-dimensional prob-
lems have fewer visible disconnects and overall a more concave front shape.

MOLE algorithm, which, as a purely local search approach, is slowed down by
the amount of locally efficient points, while the performance of the evolutionary
algorithms is less affected. Further, by comparing the achieved values at the end
of the runs for the 32 and 128 peaks problems, we see that the random problems
tend to be slightly harder to solve than the funnel problems for the EAs, while
MOLE is less affected.

Figure 7 shows critical difference plots [9] for all problem dimensions and
topologies. It validates that, in general, Omni-Optimizer and NSGA-II perform
best, though only in 10D Omni-Optimizer is clearly superior. They are followed
by SMS-EMOA and MOLE. For SMS-EMOA, the mentioned random parent
selection scheme implemented in ecr might be the reason for its comparatively
bad performance w.r.t. NSGA-II. Further, MOLE’s performance relative to SMS-
EMOA is improving with dimensionality, although they are always statistically
tied. MOLE also tends to perform slightly better on random than on funnel
topologies. Finally, while random search seems to have some merit in lower
dimensions (2, 3), it is clearly the worst performer in higher dimensions (5, 10).
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5 Conclusions

In this work, we introduced a new methodology for determining the globally
optimal solutions of MOPs, which are created based on multiple peak problems,
to an arbitrary precision in terms of dominated HV. We apply this methodology
for developing tools that are able to generate a wide range of benchmark prob-
lems with ground truth regarding the PS and PF while simultaneously having
complex landscape characteristics. The highly parametrizable generator facili-
tates the creation of problems with specific structural properties, which in turn
is essential for conducting structured analyses of landscape properties of MOPs.
Next to landscape analyses, the ground truth enables a systematic benchmarking
of algorithms, which we demonstrated in a proof-of-concept study.
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We consider our work fundamental to perspectively constructing diverse, yet
well-understood, MO benchmark problems in order to enhance and meaning-
fully complement existing benchmark suites. Our presented framework offers
promising perspectives for future research in various important areas ranging
from benchmark design and understanding algorithm behavior to characterizing
problem landscapes and measuring optimizer performances.

First, considering additional peak shape functions and other topologies en-
ables and facilitates the straightforward construction of a broader scope and
thus a more diverse set of benchmark problems. Integrating decision and ob-
jective space transformations provides an additional promising avenue for fu-
ture extensions. Such transformations could be, for instance, the introduction of
asymmetries (similar to those used in the single-objective BBOB test suite) into
the previously constructed multiple peaks functions. We would also like to point
out that the mathematical analysis of the PS can easily be extended to more
objectives. However, in this case, it is not intuitively clear how to generalize the
PS approximation.

In addition to constructing more comprehensive benchmark suites for global
MO optimization, we are also interested in facilitating investigations of the lo-
cal search dynamics. Therefore, analyzing an algorithm’s convergence to locally
efficient sets, e.g., using the Basin-Based Evaluation (BBE) method proposed
in [14], represents another compelling and feasible extension of our framework.
Aside from investigating the convergence of algorithms with BBE, considering
performance metrics beyond HV and providing target values for an arbitrary
precision represents another meaningful perspective for future work.

Another prospective research avenue could be the design of measurable land-
scape features to characterize (local and global) structural properties of purpose-
fully constructed problems with different complexity and known ground truth
w.r.t. efficient sets. This will be an essential intermediate step towards (i) charac-
terizing MO problems in general (including high-dimensional problems that are
not visualizable anymore), as well as (ii) developing feature-based approaches
such as automated algorithm selection.

Finally, we emphasize that our experimental study is intended to illustrate
first proof-of-concept takeaways. For future work, we envision our approach en-
abling a sound and reliable comparison of MO optimizers by evaluating them
on a broader set of problems with known structural challenges and also config-
uring them via automated algorithm configuration methods [18,15,2]. This will
ultimately lead to a better understanding of algorithmic components and pave
the ground for better algorithm design.
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