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Abstract—In this paper, we address the problem of computing
all locally optimal solutions of a given multi-objective problem
whose images are sufficiently close to the Pareto front. Such
ϵ-locally optimal solutions are particularly interesting in the
context of multi-objective multimodal optimization (MMO). To
accomplish this task, we first define a new set of interest,
LQ,ϵ, that is strongly related to the recently proposed set of ϵ-
acceptable solutions. Next, we propose a new unbounded archiver,
ArchiveUpdateLQ,ϵ, aiming to capture LQ,ϵ in the limit. This
archiver can in principle be used in combination with any
multi-objective evolutionary algorithm (MOEA). Further, we
equip numerous MOEAs with ArchiveUpdateLQ,ϵ, investigate
their performances across several benchmark functions, and
compare the enhanced MOEAs with their archive-free coun-
terparts. For our experiments, we utilize the well-established
metrics HV, IGDX, and ∆p. Additionally, we propose and use a
new performance indicator, IEDR, which results in comparable
performances but which is applicable to problems defined in
higher dimensions (in particular in decision variable space).

Index Terms—multi-objective optimization, evolutionary com-
putation, multimodal optimization, local solutions.

I. INTRODUCTION

MULTI-OBJECTIVE optimization problems (MOPs),
i.e., problems where several objectives have to be opti-

mized concurrently, arise in many applications. One important
characteristic of such problems is that the solution set – the
so-called Pareto set – forms in the continuous case and under
certain (mild) assumptions on the model, at least locally, a
manifold of dimension k − 1, where k is the number of
objectives considered in the MOP.

For the numerical treatment of MOPs, multi-objective
evolutionary algorithms (MOEAs) have caught the interest
of many researchers and practitioners during the last three
decades. Reasons for this include that MOEAs are applicable
to a wide range of problems, require minimal assumptions on
the model, and are of a global nature. Further, their set-based
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approach allows them to compute a finite-size representation of
the entire solution set in one algorithm run. Hereby, however,
most MOEAs focus on the approximation of the Pareto front,
which is the image of the Pareto set.

On the one hand, this makes sense since the Pareto front
represents the set of optimal options for the decision maker
(DM) measured by the individual objectives of the given
MOP. On the other hand, the possible realizations of these
options are, in certain cases, not fully considered: It may
happen that for an element y of the Pareto front, there exist
two (or more) solutions x1 and x2 that map both to y (i.e.,
F (x1) = F (x2) = y, where F denotes the multi-objective
map). For such problems, most MOEAs only store one of
these solutions. This could represent a shortcoming since x1

and x2 could be very distinct and represent essentially different
realizations, which is useful information for the DM.

The situation is essentially the same if F (x1) ≈ F (x2),
even if, say, x2 is dominated by x1 (but by small amounts
in terms of the objective function values). Analogously, all
of such ϵ-efficient or nearly optimal solutions are of potential
interest for the DM which has been studied in [1–5]. One
major issue with these sets is that they are of dimension n (n
being the number of decision variables) while the dimension of
the Pareto set/front is k−1, and n is in most applications much
larger than k−1. Recently, Li at al. [6] proposed the set of ϵ-
acceptable solutions in the context of multimodal optimization
(MMO) which can be seen as a particular discretization of the
set of nearly optimal solutions. More precisely, the authors
consider a feasible point ϵ-acceptable if it is locally optimal
and ϵ-efficient. One can hence expect that these points form a
set of dimension k− 1 (i.e., the same as the Pareto set/front).

In this work, we address the computation of such locally
optimal ϵ-efficient solutions. To this end, we will first define
a set of interest, LQ,ϵ, that is highly related to the set of
ϵ-acceptable solutions (but which uses a slightly different
way to define ϵ-efficiency). In the next step, we propose a
new unbounded archiver that aims to approximate this set.
Further, we will discuss how to use this archiver within
existing MOEAs and propose a new performance indicator.
This indicator, IEDR, is considering the “essentially different
realizations” for points y on the Pareto front and, hence,
is highly related to LQ,ϵ. Opposed to existing indicators in
MMO, this one is applicable to problems defined in higher
dimensions (in particular in decision variable space).

The remainder of this work is organized as follows: In
Section II, we briefly present the required background to un-
derstand this work and discuss the related work. In Section III,
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we define and discuss the set of interest, LQ,ϵ. In Section IV,
we present the archiver ArchiveUpdateLQ,ϵ that aims to
capture all promising solutions. In Section V, we shortly
discuss how this archiver can be integrated into MOEAs, and
propose in Section VI a new performance indicator, IEDR,
related to LQ,ϵ. In Section VII, we present some numerical
results, and finally, we draw our conclusions and discuss
possible paths of future work in Section VIII.

II. BACKGROUND AND RELATED WORK

Throughout this work, we consider continuous multi-
objective optimization problems that can be expressed as

min
x∈Q

F (x). (MOP)

Hereby, F denotes the map consisting of k individual
objectives fi, i = 1, . . . , k,

F : Q→ Rk, F (x) = (f1(x), . . . , fk(x))
T , (1)

which is defined on a domain Q ⊂ Rn. Given v, w ∈ Rk,
we say that v is less than w (v <p w), if vi < wi for all i ∈
{1, . . . , k} (analog for the relation ≤p). y ∈ Q is dominated by
a point x ∈ Q (x ≺ y) with respect to (MOP) if F (x) ≤p F (y)
and F (x) ̸= F (y). x ∈ Q is called a Pareto optimal point if
there exists no y ∈ Q that dominates x. The set of all Pareto
optimal points is called the Pareto set (PS), denoted by PQ,
and its image F (PQ) is called the Pareto front (PF).

Given a vector ϵ = (ϵ1, . . . , ϵk)
T ∈ Rk

+ and x, y ∈ Q, we
say that x ϵ-dominates y (x ≺ϵ y) with respect to (MOP) if
F (x)− ϵ ≤p F (y) and F (x)− ϵ ̸= F (y).

For the performance evaluations we will use several per-
formance indicators. One of them is the averaged Hausdorff
distance ([7, 8]).

Definition 1: Let A,B ⊂ Rm be finite sets. The value

∆p(A,B) = max(Dp(A,B), IDp(A,B)), (2)

where

Dp(A,B) =

(
1

|A|
∑
a∈A

d(a,B)p

)1/p

IDp(A,B) =

(
1

|B|
∑
b∈B

d(b, A)p

)1/p

,

(3)

p ∈ N and d(a,B) = min
b∈B

(∥a − b∥2), is called the averaged
Hausdorff distance between A and B.
For p =∞, the indicator coincides with the Hausdorff distance
dH . As opposed to dH , the values of ∆p are for finite
values of p not entirely determined by single outliers in the
candidate set. ∆p is well understood in the context of Pareto
front approximations (i.e., m = k and B an approximation
of the Pareto front). In that case, ∆p prefers evenly spread
solutions of the images of the candidate solutions along the
Pareto front ([9]). Based on the the definition of ∆p and our
prior observations we expect ∆p to behave very similarily
for the sets we consider in this work: we will measure the

approximation quality of a given archive A toward LQ,ϵ

(decision variable space), respectively F (A) toward F (LQ,ϵ)
(objective space). Since the latter does not have to be identical
to the Pareto front of the given MOP, we are hence not dealing
with (classical) Pareto front approximations. We will further
use the indicators IGDX ([10], in decision variable space) and
HV ([11], in objective space).

Over the last three decades, many different multi-objective
evolutionary algorithms (MOEAs) have been proposed [12],
which can be roughly divided into three main classes: (i)
MOEAs based on the dominance relation [13, 14], (ii) on de-
compositions [15, 16] and (iii) on indicator functions [17, 18].
Since the sets of interest – mainly the Pareto set/front, but
also other ones such as all locally optimal or nearly optimal
solutions – typically consist of infinitely many elements, all of
these MOEAs are equipped with particular selection strategies
(i.e., strategies that decide which of the promising candidate
solutions to keep during the run of the algorithm, and which
ones to discard). Next to these selection strategies, several
archiving strategies have been proposed during the last years,
mainly intended to be used as external archivers to the base
MOEA in order to obtain a more complete representation
of the given set of interest. There exist, for instance, sev-
eral bounded archivers, i.e., selection strategies that maintain
archives whose magnitudes do not exceed a pre-described
threshold. For instance, in [19, 20], several such archiving
strategies are presented and discussed that are based on adap-
tive grid selections. In [21], bounded archivers are presented
and analyzed, aiming for hypervolume approximations of the
Pareto front. While in [22], the authors analyze the properties
of several archiving techniques widely used in the literature.

Next, several archiving strategies have been proposed that
utilize the concept of ϵ-dominance [23–26]. In these works,
this concept is used to gather finite-size Pareto front approxi-
mations. All of these archivers yield finite-size approximations
of the Pareto front with certain approximation qualities in the
limit. However, the final magnitudes can not be adjusted a
priori (since they mainly depend on the size of the Pareto
front, which is not known beforehand). In [27], the authors
propose an algorithm that converges to an ϵ-Pareto set of size
k with smallest possible value of ϵ. In [4], the authors propose
an archiver that aims to represent the entire set of approximate
solutions of a given MOP.

Finally, some researchers proposed to store all the non-
dominated solutions found during the run of the algorithm
(e.g., [28–32]). Since such archivers are unbounded by nature
and since many DMs prefer to consider moderately-sized rep-
resentations of the solution sets after the run of the algorithm,
specialized subset selection techniques have been proposed for
this purpose (e.g., [33, 34]). The interested reader is referred to
[35] for a survey on archiving in multi-objective optimization.

The final concept that we need to introduce is multi-
objective multimodal optimization (MMO). In single-objective
optimization, multimodal optimization strives to identify local
optima within a certain maximum distance ϵ (in objective
space) to the global optimum, as illustrated in Figure 1. This
approach allows to provide the decision maker with potential
alternative or backup solutions. A good overview of (single-
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objective) multimodal optimization is given in [36].
In contrast, multi-objective multimodal optimization

(MMO) only recently started to attract increasing attention
[37–39]. Still, there are several competing perspectives on
this subject, which we will shortly outline here.

The most prevalent view presumes that MMO problems
(MMOPs) feature a Pareto front with multiple distinct pre-
images in decision space [38, 40–42]. It is then the task of an
optimization algorithm to find and approximate all pre-images,
or in other words, the entire Pareto set. To accomplish this
task, the (temporary) consideration of locally optimal solution
is a helpful tool (e.g., [5]), since all global solutions are also
locally optimal. Test problems that follow this characterization
are, for example, the suite of MMF problems [41], SYM-
PART problems [40], Deterministic Distortion and Rotation
Benchmark (DDRB) [43], and Omni-test [44]. However, this
specification of MMOPs is rather limited: It presumes that
all solutions of interest are Pareto-optimal and is thus only
equivalent to the single-objective scenario where ϵ = 0. This
is evidenced in studies of bi-objective problems created from
the well-known black-box optimization benchmark (BBOB)
[45], specifically the bi-objective BBOB [46], as well as test
problems created with a multiple peaks model [37, 47, 48],
where the Pareto front has only one pre-image. Consequently,
this view is also referred to as multiglobal multi-objective
optimization [39].

A secondary perspective of MMO focuses on identifying
locally efficient points [39, 49–51]. Landscape analysis and
visualization studies based on this perspective highlight the
importance of locally efficient sets and their induced search
dynamics in a variety of test problems [52–56]. This per-
spective emphasizes the ability of locally efficient solutions
to filter out irrelevant decision alternatives for which slight
modifications already give a dominating performance.

Finally, the set of nearly optimal solutions is also sometimes
referred to as MMO [1–5, 38, 57]. However, this definition
does away with all notions of local optimality and may deliver
solution alternatives that are all contained in the same basin of
attraction. Based on these characteristics, we do not consider
this to be an essentially MMO approach. However, it will turn
out to be an important ingredient for the set of interest that
we will consider for the rest of this study.

III. THE SET OF INTEREST

Here, we define and shortly discuss the set of interest, LQ,ϵ.
As motivated above, we are interested in all locally optimal
solutions x, whose images F (x) are “close” to the Pareto front.
Thus, given ϵ ∈ Rk

+ and Pareto set PQ, let the set of nearly
optimal solutions and the set of locally optimal solutions be

NQ,ϵ := {x ∈ Q|∃p ∈ PQ : x ≺ϵ p},
LQ := {x ∈ Q|∃ neighborhood N of x (4)

s.t. ̸ ∃y ∈ (N ∩Q) : y ≺ x}.

Then, we define the set LQ,ϵ as their intersection.

x
1

x
2

x
3

x
4

Fig. 1. Example of a scalar optimization problem with one global solution,
x1, and three locally optimal ones, x2 to x4.

Definition 2: LQ,ϵ defines the set of all the nearly optimal
solutions of (MOP) that are also locally optimal, i.e.,

LQ,ϵ := NQ,ϵ ∩ LQ

= {x ∈ Q|∃p ∈ PQ : x ≺ϵ p and ∃ neighborhood N

of x s.t. ̸ ∃y ∈ (N ∩Q) : y ≺ x}.
(5)

Remark 1:
LQ,ϵ is strongly related to the set of ϵ-acceptable solutions

defined in [6]. The main difference between the two sets is
given by the use of different definitions of ϵ-efficiency. While
LQ,ϵ uses the additive form defined above, the other set is
based on a multiplicative definition of ϵ-dominance [23]. That
is, both sets accomplish the same task, the difference is in the
choice of the relaxation parameter ϵ: absolute values for LQ,ϵ

and relative ones for the set of ϵ-acceptable solutions.
Depending on the choice of ϵ ∈ Rk

+, the set LQ,ϵ can, in
principle, be used to deal with the two other existing MMO
definitions: (i) It is PQ ⊂ LQ,ϵ for all ϵ ∈ Rk

+. That is,
for “very small” values of ϵ, the set LQ,ϵ will essentially
only consist of all the pre-images of the Pareto front. (ii) For
“large enough” values of ϵ, LQ,ϵ is identical to the set of all
locally optimal solutions LQ, regardless of the distance to the
Pareto front. However, as discussed above, we suggest here
to use “small” values of ϵ so that LQ,ϵ contains all locally
optimal solutions (in particular all pre-images of the Pareto
front) whose images are still close to the Pareto front. Needless
to say, “small” and “close” are problem-dependent, so the
values of ϵ must be adjusted by the DM to the given problem
accordingly.

To familiarize with LQ,ϵ, we consider three examples:
(a) The easiest way to get familiar with LQ,ϵ is to consider

the special case k = 1, i.e., a scalar or single-objective
optimization problem (SOP). For this case, we obtain

N
(1)
Q,ϵ = {x ∈ Q|f(x)− ϵ < f(x∗) and ∃ neighborhood

N of x s.t. ̸ ∃y ∈ N ∩Q : f(y) < f(x)},
(6)

where f is the (only) objective function, ϵ > 0, and x∗ a
global optimum of the SOP. This definition reflects the
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“good-subset” approach from [36] and related quality
indicators proposed in [58]. Figure 1 shows the graph
of a function f with one global minimum and three local
minima. For the ϵ-value indicated in the figure, we obtain
LQ,ϵ = {x1, x2, x3}. In particular, x4 is not considered
as its image is “too far” from f(x1).

(b) Next, we consider a modification of SYM-PART [59],
which we call SYM-PART9to9 in the sequel:

F : [−8, 8]× [−6, 6] −→ R2

F (x) = (f1(x), f2(x))
T where :

fi(x) =



ri(x) if t1 = 0, t2 = 0

ri(x) + δ if t1 = −1, t2 = 0

ri(x) + 2δ if t1 = 1, t2 = 0

ri(x) + 3δ if t1 = 0, t2 = −1
ri(x) + 4δ if t1 = −1, t2 = −1
ri(x) + 5δ if t1 = 1, t2 = −1
ri(x) + 6δ if t1 = 0, t2 = 1

ri(x) + 7δ if t1 = −1, t2 = 1

ri(x) + 8δ if t1 = 1, t2 = 1

r1(x) = (x1 − t1(c+ 2a) + a)2 + (x2 − t2b)
2

r2(x) = (x1 − t1(c+ 2a)− a)2 + (x2 − t2b)
2

t1 = sign(x1)min(⌈(|x1| − a− c/2)/(2a+ c)⌉, 1),
t2 = sign(x2)min(⌈(|x2| − b/2)/b⌉, 1),
a = 0.5, b = 5, c = 5, δ = 0.12.

In SYM-PART, each point on the Pareto front has nine
different pre-images. In SYM-PART9to9, in eight out of
these nine segments, the function values are increased by
multiples of δ > 0 so that the problem has one global
Pareto set/front, and another eight local sets/fronts. If
8δ ≤ ϵi, i = 1, 2, LQ,ϵ is hence given by all of these nine
components. Figures 2 (a) and (b) show this scenario.
Note that in this example F (LQ,ϵ) is not identical to the
Pareto front. Since this is the case for all MOPs that have
ϵ-locally optimal solutions that are not globally optimal,
we are in this context not dealing with (classical) Pareto
front approximations.

(c) At last, we consider the first instance of the 55th bi-
objective BBOB problem in 2D [46], which we abbre-
viate as BBOB55. Figures 2 (c) and (d) show the cor-
responding sets LQ,ϵ and F (LQ,ϵ) for ϵ = (2.5, 2.5)T .
Noticeably, LQ,ϵ falls into multiple connected compo-
nents all over the search space.

IV. AN ARCHIVER FOR THE COMPUTATION OF LQ,ϵ

Here we propose ArchiveUpdateLQ,ϵ, an unbounded
archiver that aims to capture LQ,ϵ in the limit. Since the
archiver tends to generate outliers, particularly for more com-
plex problems, we also propose a cleaning step to be applied
to the final archive.
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(a) LQ,ϵ
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Fig. 2. The sets LQ,ϵ and F (LQ,ϵ) for the two-decision variable problems
SYM-PART9to9 (top row) and BBOB55 (bottom row).

A. Archiver

Algorithm 1 below shows the pseudo-code of
ArchiveUpdateLQ,ϵ. Before we describe the algorithm
in detail, we first discuss its acceptance strategy (lines 5 and
6), which is the core of the archiver. LQ,ϵ is the intersection
of NQ,ϵ and LQ, and the membership for each set cannot
be decided directly during the algorithm’s run. The Pareto
set (for NQ,ϵ) is apparently not known beforehand, and local
optimality (for LQ) is hard to detect – at least if no gradient
information is used (for which we opted for this study).
Alternatively, we proceed as follows: We add a candidate
solution d (at least temporarily) to the archive either if (i) it
is non-dominated out of the considered candidate solutions
from the entire run of the algorithm (this set is denoted by
ND) or (ii) it ϵ-dominates one of the elements from ND and
there exists no element b, considered candidate solution in the
neighborhood of d, such that b dominates d. More precisely,
we compare d to the current candidate solutions (current
archive plus new population) within the δx-ball around d,

Bδx(d) := {x ∈ Rn : ∥x− d∥2 ≤ δx}. (7)

The complete update process of the archiver is as follows.
The archiver’s inputs are the current archive A0 and a popula-
tion P , a new set of candidate solutions by which A0 should
be updated, and the thresholds ϵ ∈ Rk

+ (in objective space)
and δx ∈ R+ (in decision space). The set C is then defined
as the union of A0 and P . Next, compute the set of non-
dominated points out of C, defined as ND, and the set of
dominated solutions D. The new archive A is initialized with
ND. Finally, all elements d ∈ D, which satisfy the condition
(ii) described above, will be added to A.
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Algorithm 1 ArchiveUpdateLQ,ϵ

Require: (objective-space-normalized) population P , archive
A0, thresholds ϵ ∈ Rk

+, δx ∈ R+

Ensure: updated archive A
1: C ← A0 ∪ P
2: ND ← nondom(C) ▷ non-dominated points
3: D ← C\ND ▷ dominated points
4: A← ND
5: for all d ∈ D do
6: if (∃n ∈ ND : d ≺ϵ n) and ( ̸ ∃b ∈ (Bδx(d)∩C) : b ≺

d) then
7: A← A ∪ {d}
8: end if
9: end for

10: return A

It remains to determine the value of δx which is problem-
dependent. Here, we have used five percent of the diagonal of
the bounding box. That is, given the lower and upper bounds
l, u ∈ Rn of the considered MOP, we have chosen

δx :=
1

20
· ∥u− l∥. (8)

If the decision variables are in different ranges, one can
of course use different values of δx in each coordinate (i.e.,
δx ∈ Rn), e.g., via using the neighborhood

B̄δx(d) := {x ∈ Rn : |xi − di| ≤ δxi
, i = 1, . . . , n}. (9)

B. Cleaning

The archiver described above generates some outliers which
is owed to the fact that a neighborhood of constant size is used
to decide if a candidate solution could be locally optimal.
We hence suggest applying a post-processing step that we
discuss in the following on the final archive generated by
ArchiveUpdateLQ,ϵ (which we will refer to as cleaning).
This post-processing step will be performed in decision space
and on the dominated set of points, since we know the range
of the decision variables in advance and all the outliers are
dominated points. We want to remove points that are likely
outliers, i.e., points that are isolated and far away from the rest
(taking advantage of the fact that local and global solutions
of MOPs typically form – at least locally – manifolds of a
certain dimension). The clustering algorithm DBSCAN [60]
that groups points based on density can identify outliers and
does not need the number of clusters as input, making it an
adequate choice for cleaning.

The only remaining step is to select appropriate values
of minpts and r, the two parameters of DBSCAN, which
may be problem-dependent. Therefore, we propose to do a
grid search on a small set of values for the parameters. For
minpts, we use the values 2 and 3, and for r we first compute
the average distance (in decision space) between dominated
points d̄, and then set r = {0.01d̄, 0.02d̄}, i.e. 1% and 2%
of the average distance. This way we have an automated and
problem-independent way of selecting the parameters. These
values of r work in particular well for two and three decision

variables. For higher dimensional problems (DTLZ and WFG)
we used the same values, however, more adequate values might
be selected which we leave for future work.

To select the best cluster out of the grid search, we need to
use a function that measures cluster quality. For this we used
the weakest link function defined in [61], which measures the
smallest out of the longest path of points within a cluster. A
summary of the cleaning process can be seen in Algorithm 2.

Algorithm 2 Cleaning
Input: Archive A
Output: Clean Archive Aclean

1: ND ← nondom(A) ▷ non-dominated points
2: D = {d1, d2, . . . } ← A\ND ▷ dominated points
3: Set d̄← 2

|D|(|D|−1)

∑
di ̸=dj

∥di − dj∥ ▷ in decision space

4: Set wlmin←∞
5: for minpts in {2, 3} do
6: for r in {0.01d̄,0.02d̄} do
7: C ← DBSCAN(D, r,minpts) ▷ in decision space

8: Set Dc as the union of clusters in C.
9: wl← WeakestLink(Dc)

10: if wl ≤ wlmin then
11: Aclean ← Dc ∪ND
12: wlmin← wl
13: end if
14: end for
15: end for
16: return Aclean

C. Examples

We finally show some numerical results to show the effect
of the archiver and the cleaning step. To this end, we feed
the archiver with N candidate solutions that were chosen
uniformly at random from the domain of the given MOP.

Figure 3 shows a numerical result for problem MMF1 [62].
The Pareto set of this problem consists of two connected
components that both map to the entire Pareto front. Figures
3 (a) and (c) show the final archive Af and its image F (Af )
using N = 100,000. Af contains 2,875 solutions which nicely
cover both connected components, but also come with around
40 outliers (most visible in objective space). Figures 3 (b) and
(d) show the result of the cleaning step on Af and F (Af ).
The resulting set, called Ac, contains 2,630 elements, where
in particular all of the outliers have been removed.

Figure 4 shows analog results for the more complex problem
BBOB55 using N = 2,000,000. The final archive Af (shown
in black) consists of 9,495 points and captures almost the
entire set of interest LQ,ϵ (shown in blue), coming with around
400 outliers. The cleaned set Ac contains 7,289 elements and
has a better overall approximation quality since all outliers
(except for two) have been removed by the cleaning step.

Finally, we consider problem SYM-PART9to9 using the
thresholds ϵ(1) = (0.1, 0.1)T , ϵ(2) = (0.4, 0.4)T and ϵ(3) =
(1, 1)T using N = 100,000 test points. Figure 5 shows
numerical results (Af and F (Af )) of the archiver for ϵ(1), ϵ(2)

and ϵ(3) yielding approximations of one, four and nine out of
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Fig. 3. Final archive for the MMF1 problem in decision (a) and objective
space (c), respectively. Cleaned archive in the decision (b) and objective space
(d), respectively.

TABLE I
DISTANCES MEASURED BY ∆2 OF THE IMAGES OF THE ARCHIVES F (Af )

AND F (Ac) TOWARD F (LQ,ϵ) FOR THE CONSIDERED TEST PROBLEMS.

Problem ∆2(F (Af ), F (LQ,ϵ)) ∆2(F (Ac), F (LQ,ϵ))

MMF1 0.053945 0.013601
BBOB55 0.056124 0.050317
SYM-PART9to9 ϵ(1) 0.003018 0.003018
SYM-PART9to9 ϵ(2) 0.002850 0.002850
SYM-PART9to9 ϵ(3) 0.003184 0.003184

the nine components, respectively. We omitted the result of
the cleaning step since it has no effect in these cases.

LQ,ϵ is known analytically for SYM-PART9to9 and MMF1.
In order to get a good approximation of LQ,ϵ for BBOB55,
we first fed ArchiveUpdateLQ,ϵ with 1, 000, 000 randomly
chosen points. Next, we have used one point per connected
component of the final approximation as starting point for the
multi-objective continuation method Pareto Tracer [63].

Table I shows the approximation qualities of the image
of the archives w.r.t. F (LQ,ϵ) using the averaged Hausdorff
distance ∆2 (i.e., p = 2) for all problems considered above
which confirms the visual observations: ∆2 goes down for
MMF1 and BBOB55 because of all the outliers removed, and
remains the same for SYM-PART9to9 where the cleaning had
no effect.

V. INTEGRATION INTO MOEAS

So far, no specialized algorithm exists that aims for LQ,ϵ

approximations. However, it is, of course, possible to equip in
principle any MOEA with ArchiveUpdateLQ,ϵ as an external
archive, as we will briefly describe in the following. Doing
so, new LQ,ϵ solvers are generated, which we will further
investigate in the following sections.

(a) (b)

(c) (d)

Fig. 4. (a), (c) Final archive for the BBOB55 problem in decision and
objective space respectively. (b), (d) Cleaned archive in the decision and
objective space respectively.
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Fig. 5. Result of ArchiveUpdateLQ,ϵ on SYM-PART9to9 using ϵ(1) =
(0.1, 0.1)T ((a) and (d)), ϵ(2) = (0.4, 0.4)T ((b) and (e)), and ϵ(3) =
(1, 1)T ((c) and (f)). Shown are the final archives and their images without
cleaning. The cleaning step does not change the archives for all cases.

Algorithm 3 shows a framework that incorporates
ArchiveUpdateLQ,ϵ as external archiver to a given MOEA.
Pi and Ai denote the i-th population and archive in generation
i, respectively. At first, the initial population P0 is initialized
(depending on the chosen MOEA), and A0 is built by the
archiver based on this set. Next, the processes to generate new
candidate solutions and the archiver are applied in a loop.
Hereby, Generate() symbolically refers to the generation
process of the chosen MOEA. If the termination conditions
are satisfied, the loop is terminated. The final population Pf
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is simply the one that has been generated last by the MOEA.
For the final archive Af the findings are similar, however, first,
the cleaning step is applied in order to remove possible outliers
from the candidate set (only once at the end of the search).

Algorithm 3 MOEA equipped with ArchiveUpdateLQ,ϵ

Require: problem (MOP), chosen MOEA
Ensure: final population Pf , final archive Af

1: P0 ← initialize()
2: A0 ← ArchiveUpdateLQ,ϵ(P0, ∅)
3: t← 0
4: while Condition do
5: Pt+1 = Generate(Pt)
6: At+1 ← ArchiveUpdateLQ,ϵ(Pt+1, At)
7: t← t+ 1
8: end while
9: Pf ← Pt

10: Af ← Cleaning(At)
11: return {Pf , Af}

For the efficient use of such an archive-equipped MOEA we
suggest following the approach proposed in [64], which has
a significant impact on the overall performance: Specifically,
we suggest using the following modified objectives instead of
the original objectives fi, i = 1, . . . , k, of the given MOP:

f̄i(x) = (1− α)fi(x) +
α

k

k∑
i=1

fi(x), i = 1, . . . , k, (10)

where α > 0 is a “small” value. We have used α = 0.02 for
the computations presented here. The reason for this is that
ArchiveUpdateLQ,ϵ computes the non-dominated solutions
out of the given candidate solutions (line 2 of Algorithm 1).
If a MOP, however, contains weakly optimal solutions that
are not globally optimal, stochastic search algorithms such
as MOEAs may find and keep such “dominance-resistant
solutions” which may have a negative impact on the solution
quality. The use of the modified objectives helps to remove
these dominance-resistant solutions. Finally, since the individ-
ual objectives’ values may be in different ranges, we apply the
normalization strategy in objective space as done in [16].

VI. A PERFORMANCE INDICATOR FOR LQ,ϵ

Here, we propose a new performance indicator that is
related to LQ,ϵ. A possible choice is certainly to compute the
distance between the set of interest and the given archive A,
e.g., to use ∆2(A,LQ,ϵ) and ∆2(F (A), F (LQ,ϵ)) in decision
and objective space, respectively. Such distance calculations,
however, are only possible if LQ,ϵ is known completely and are
therefore restricted to low-dimensional benchmark problems.
The same discussion holds for any distance based indicators
such as IGD and PSP [41]. Instead, we propose in the
following to consider the “essentially different realizations” (in
decision space) for certain target values (in objective space)
enabled by A with respect to a reference set Y given in
objective space. We will first consider the idea for one target
value and then propose the indicator defined for a given MOP.

Assume we are given an archive A ⊂ Rn and the thresholds
ϵ ∈ Rk

+ and δx > 0. Further, assume we are given an element
(target value) y ∈ Rk, then

r(y,A, ϵ) := {a ∈ A : |fi(a)− yi| < ϵi, ∀i = 1, . . . , k}
(11)

represents the set of possible realizations of y within A and
using the threshold ϵ – assuming that any point a ∈ A for
which F (a) is sufficiently close to y (defined by ϵ) is accept-
able. Note that the magnitude of this set is not conclusive for
our purpose: If a1 ∈ r(y,A, ϵ), then any element a2 ∈ A
that is sufficiently close to a1 is certainly also included in
r(y,A, ϵ), but may not represent a different realization for
the decision maker. To get an estimation of the essentially
different solutions, we suggest to proceed as follows: Let
C = C(δx) be a collection of uniform boxes (hypercubes)
that form a partition of (a superset of) the domain Q. Further,
let the lengths of the boxes be given by δx. Then we say that
two solutions a1, a2 ∈ A that are included in two different
boxes represent two essentially different realizations of y.
Consequently, the number of essentially different realizations
(edr) is given by the number of boxes c ∈ C that intersect
with r(y,A, ϵ). We hence define

edr(y,A, ϵ, δx) := |{c ∈ C : r(y,A, ϵ) ∩ c ̸= ∅}|. (12)

After having defined the value edr for one element y ∈ Rk, we
are now in the position to propose the indicator IEDR: Given
a finite-size representation Y ⊂ Rk, we define the indicator
value as the average of the edr values over all elements of Y ,

IEDR(Y ) :=
1

|Y |
∑
y∈Y

edr(y,A, ϵ, δx). (13)

Hereby, the elements of Y should be uniformly distributed
around the entire Pareto front, for each y ∈ Y it ideally holds

δy = dist(y, Y \{y}) = min
ȳ∈Y \{y}

∥y − ȳ∥2 ≈ ∥ϵ∥∞. (14)

We stress that generating the entire box collection C that
covers Q is not required. Instead, we can proceed as done
in cell mapping techniques [65]: Given the lower and upper
bounds of the problem, l, u ∈ Rn, for a point x ∈ r(y,A, ϵ)
we can compute the the box identifier zi as follows:

zi =

⌈
xi − li
δx

⌉
, i = 1, . . . , n. (15)

Their feasibility can easily be checked – zi ∈
[
0,
⌈
ui−li
δx

⌉]
– and duplicate entries can be identified via considering the
identifiers from r(y,A, ϵ) leading to edr(y,A, ϵ, δx).

We finally stress that IEDR is not Pareto compliant. This
is due to the fact that an essentially different solution may
be non-optimal. Figure 6 shows one example on MMF1
using the archive A shown in Figure 3 (c), the target value
y = (0.769, 0.123)T , and the thresholds ϵ = (0.1, 0.1)T and
δx = 0.4. For this setting, we obtain 46 elements in r(y,A, ϵ),
which fall into two relatively small clusters. These pre-images
lie within two boxes, leading to edr(y,A, ϵ, δx) = 2 for the
chosen thresholds. Smaller values of δx – and thus, smaller
box sizes – may lead to edr values larger than two. However,



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. Y, XYZ 8

1 1.5 2 2.5 3
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(a) decision space

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.76 0.78

0.11

0.12

0.13

(b) objective space

Fig. 6. Hypothetical example on MMF1 using ϵ = (0.1, 0.1)T and δx = 0.4.
Left: the Pareto set (blue line), the archive A (blue dots), and the realizations
r(y,A, ϵ) (black dots). Right: the Pareto front (blue line), the target value y
(red diamond) and the images of r(y,A, ϵ) (black dots). The inset plot in the
top right corner provides a zoomed-in view of the neighborhood around y.
For the chosen values of the thresholds we obtain edr(y,A, ϵ, δx) = 2.

this does not contradict the definition of edr since elements on
the same connected component can indeed represent different
realizations for the DM.

VII. EXPERIMENTAL STUDY

In this section, we empirically investigate the effect of
integrating the archiver into different state-of-the-art MOEAs.

A. Experimental Setup

To assess the archiver’s applicability, we performed an
empirical analysis considering 13 algorithms and 43 problems
from the literature. We selected NSGA-II [13], NSGA-III [16],
MOEA/D [15] and SMS-EMOA [17] as representatives of
classical MOEAs. Next, we selected CMMO [66], DN-NSGA-
II [67], HHC-MMEA [68], HREA [6], MMEA-WI [69],
MO Ring PSO SCD [41], MPMMEA [70], TriMOEATAR
[71] from multi-objective multimodal evolutionary algorithms,
and a random search procedure as a baseline of the approach.

For the problems we selected MMF1-8 (n = 2, k = 2)
[71], MMOP1-6 (n = 3, k = 2)[41], DTLZ1-7 (n ∈
{7, 12, 22}, k = 3)[72], WFG1-9 (n = 12, k = 3)[73], Aspar
(n = 2, k = 2)[51], Bi-Rosenbrock (n = 2, k = 2)[55],
bbob-biobj1, bbob-biobj2, bbob-biobj10, BBOB55 (cf. above)
(n = 2, k = 2) [46], Deb99 (n = 2, k = 2) [74], Two-on-
One (n = 2, k = 2) [59], SYM-PART and SYM-PART9to9
(n = 2, k = 2) [59], SSW (n = 3, k = 2)[75], LSS
(n = 5, k = 2) [76], Omni (n = 4, k = 2) [77], and
twelve problems from the imbalanced distance minimization
benchmark problems with ϵ-efficient solutions (IDMP e) [6]
have been used (n = {2, 3, 4}, k = {2, 3, 4}). In all cases, n is
the number of decision variables, k is the number of objectives
and we normalize the objective space as done in [16]. All of
these problems have already been used in the context of MMO
and approximate solutions. All algorithms and problems were
used from the PlatEMO platform version 4.2 [78].

We performed 20 independent executions of each (algo-
rithm, problem)-combination and computed the corresponding
indicators (hypervolume, IGDX (for k = 2), ∆2 in decision
variable space (for k = 2), and EDR indicator). We use LQ,ϵ

as the reference set for IGDX and ∆2; for the hypervolume
measure, we specify the reference point as the approximation
of the nadir point plus 10% of the difference between the nadir
and the ideal point; and for EDR we use discretizations Y of
the PF.

Further, for computing LQ,ϵ, we used the reference Pareto
sets/fronts provided in PlatEMO for MMF1-8 and MMOP1-6
since LQ,ϵ coincides with the PS in those cases. For Deb99,
Two-on-One, SYM-PART, SYM-PART9to9 and Omni, the PF
and PS is known, so a uniform sampling was done. For the
rest of the bi-objective problems (SSW, Aspar, Bi-Rosenbrock,
bbob-biobj1, bbob-biobj2, bbob-biobj10, BBOB55, LSS), we
performed a grid search of 1,000n points, where n is the
number of decision variables. For the three-objective problems
(WFG and DTLZ), a grid search computation of LQ,ϵ is
unfeasible since all these problems have at least seven decision
variables. We include only HV and EDR for these problems.

Finally, to obtain Y for the EDR computations, first we
obtain the PF component out of the references described
above, and then it was reduced so that each point is a
distance of δy = 0.05 from each other. This was made to
simulate the decision making process, and obtain the finite
size representation Y as required for IEDR.

The parameters used for the experiments were as follows:
Population size: 100; Number of generations: 100; ϵ =
(0.2, . . . , 0.2)T (on normalized objectives); δx = ∥u− l∥/20;
δy = 0.2; Crossover: 1; ηc: 20; ηm: 20; Mutation: 1/n. All
other algorithm specific algorithms were set to PlatEMO’s
defaults. The locally efficient points are approximated using
the visualization approach and software PLOT [51] and then
filtered according to the ϵ-optimal solutions for each problem.
We will publish the source code to replicate all experiments,
intermediate results, and experimental analyses after the ac-
ceptance of this work.

B. Experimental Results

We view the experimental results from two different per-
spectives: First, we evaluate whether the utilization of the new
archive (in comparison to the final population) is beneficial for
any of the considered indicators (EDR, HV, ∆2, and IGDX).
Then, we will take a closer look at the overall performance of
all algorithm configurations run in our study.

1) Archiver vs. Final Population: We start by illustrating
the overall performance for each indicator, aggregated on all
runs and problems, in Figure 7. Note that we normalize the
indicator values per problem with min-max normalization to
the [0, 1] range to allow for better comparability between
different indicator value ranges per problem instance. In this
aggregated view, it becomes already clear that the archiver
generally outperforms the final population, regardless of the
indicator. ∆2 and IGDX give qualitatively similar results to the
EDR indicator, validating EDR as useful measure for MMO.

We then perform a Wilcoxon rank-sum test (p = 0.05)
for each combination of algorithm and test problem for all
indicators. Aggregated results for each optimizer are reported
in Table II for EDR and in Table III for HV. Results on
the IGDX and ∆2 indicators (not shown) reflect the results
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Fig. 7. Boxplots of the algorithms’ performances for all indicators with and
without archiver. Indicator values for each problem are normalized to [0, 1]
(lower is better) to aggregate across problem instances.

for EDR. It can clearly be seen that each optimizer performs
statistically significantly better on most problem instances with
the archiver than without. It is important to note that the
cleaning step only removes dominated solutions, therefore the
HV indicator will be unaffected by it.

In general, the performance of TriMOEATAR is not nearly
as much improved by the archiver as for other algorithms, and
its population even outscores the archiver in the HV indica-
tor evaluation. However, it is not a particularly competitive
optimizer overall, as is illustrated in Figure 7. We expect
the underwhelming archiver performance here is rooted in
problems with the TriMOEATAR optimizer.

2) Overall Evaluation: To evaluate the performance across
all test problems, we rely on critical difference (CD) plots [79].
These show each optimizer’s average rank and a CD stemming
from a Nemenyi test (α = 0.05) for pairwise comparisons.
Classifiers are not significantly different according to this test
when they are within a CD of each other, and such groups of
classifiers are joined by a horizontal line. The CD plots for
the EDR and HV indicators are shown in Figure 8.

A clear shift in preferences is visible between the indicators,
where the MMO-based algorithms CMMO, MMEA-WI, and
DN-NSGA-II perform better regarding EDR, while the top
algorithms for HV include more globally-oriented ones such
as SMS-EMOA, NSGA-II, and NSGA-III. Also, for EDR,
some optimizers are tied with random search (MOEA/D and

TABLE II
WINS, TIES, AND LOSSES ACROSS TEST PROBLEMS BASED ON WILCOXON
RANK-SUM TESTS FOR THE ARCHIVER AND POPULATION-BASED RESULTS

FOR EDR.

Optimizer Archive better Ties Final population better

CMMO 39 12 4
DN-NSGA-II 43 12 0
HHC-MMEA 45 8 2

HREA 41 13 1
MMEA-WI 40 13 2

MO Ring PSO SCD 31 21 3
MOEA/D 42 13 0

MPMMEA 51 3 1
NSGA-II 50 4 1
NSGA-III 51 4 0
Random 46 9 0

SMS-EMOA 46 9 0
TriMOEATAR 33 6 16

TABLE III
WINS, TIES, AND LOSSES ACROSS TEST PROBLEMS BASED ON WILCOXON
RANK-SUM TESTS FOR THE ARCHIVER AND POPULATION-BASED RESULTS

ON THE HV INDICATOR.

Optimizer Archive better Ties Final population better

CMMO 36 11 8
DN-NSGA-II 46 5 4
HHC-MMEA 43 8 4

HREA 45 10 0
MMEA-WI 35 14 6

MO Ring PSO SCD 26 27 2
MOEA/D 42 9 4

MPMMEA 48 5 2
NSGA-II 43 9 3
NSGA-III 43 8 4
Random 46 9 0

SMS-EMOA 34 15 6
TriMOEATAR 19 10 26

MO Ring PSO SCD), and TriMOEATAR is even beaten by
it. Note that random search is by far the weakest standalone
algorithm. That is, its performance here can be fully attributed
to the archiving strategy. Similar observations can be made for
the rankings w.r.t. IGDX and ∆2, but not for HV, where ran-
dom search is tied for worst performance, again highlighting
the complementarity of the approaches.

C. Sensitivity Analysis

The proposed archiver has two parameters: ϵ and δx. We as-
sume in this work that ϵ is given by the DM (and hence, fixed).
In the following we will perform a small sensitivity analysis
for δx on SYM-PART9to9 and BBOB55. The behavior of ϵ
for SYM-PART9to9 can be seen in Figure 5.

1) δx Experimental Setup: We performed a sensitivity
analysis using the values:

δx :=
1

δi
· ∥u− l∥, (16)

for δi ∈ {1, 5, 10, 15, 20, 25} and applied
ArchiveUpdateLQ,ϵ(P,A0, ϵ, δx). It is important to
remember that δx is inversely proportional to δi. The
parameters used were: one million points sampled uniformly
at random (P ); A0 = ∅; ϵ = (1, 1) for SYM-PART9to9 and
ϵ = (2.5, 2.5) for BBOB55; and δx as in Eq. (16). Then, we
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(a) EDR indicator

(b) HV indicator

Fig. 8. Critical difference plots for the EDR (top) and HV (bottom) indicators for all algorithms with archiver. The scale is given in ranks, i.e., lower is better.

measured the following performance indicators: IGD; EDR;
IGDX; HV ; computation time; and archive size for all the
δx values.

2) δx Results: We show the plots for all the indicators as
a function of δx in Figure 9 and the plots of the final archives
in Figures 10 and 11.

a) SYM-PART9to9 Results: Before discussing the indi-
cator plots, we need to observe in Figure 10 that for the value
of δi = 1 we get only the component that corresponds to the
PF (as expected, since δi = 1 represents the entire decision
space), and for the rest of the δi values we obtain all the local
components. Next, looking at the indicator plots (Figure 9) for
SYM-PART9to9, we can see the expected result: EDR has its
lowest value for δi = 1 because we only have one component,
and for the remaining values we have an almost constant value
for EDR, even though the archive size increases. Note that IGD
and HV remain constant, since regardless of the δx value,
the archiver will always capture the non-dominated points.
Further, in the IGDX case, we use LQ,ϵ as the reference.
This explains why the highest value for IGDX is obtained for
δi = 1, where we have only one out of the nine components.
Finally, we observe a linear increase in the size of the archive
and a nonlinear increase in the elapsed time.

b) BBOB55 Results: Before discussing the indicator
plots, we need to observe in Figure 11 that, as we increase
the value of δi, we get more local components as expected.
Looking at the indicator plots (Figure 9), we can see the
expected results: EDR is increasing with δi starting at δi = 15.
This is due to the parameters δx and δy of EDR, for which we
used the same values as in our experiments (δx = 1

20∥u− l∥
and δy = 0.2). HV is almost constant as expected. IGD
remains constant and goes down for δi = 20 and δi = 25.
In these two cases we observe (Figure 11f for δi = 25) that a
local front near the PF (near the reference points (−2,−5)
and (−2,−1)) is kept by the archiver due to the smaller
value of δx, resulting in extra (non-dominated) points closer

to the PF and therefore improving IGD. IGDX has the same
behavior as in SYM-PART9to9 since the reference used is
an approximation of LQ,ϵ and not only the PS, and therefore
the more components we find (with increasing δi), the higher
IGDX will be. Finally, we observe an almost linear increase in
the size of the archive and a nonlinear increase in the elapsed
time.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have addressed the problem of computing
all locally optimal solutions that are nearly optimal which can
be used in the context of multimodal optimization (MMO). To
this end, we have first proposed and discussed a set of interest,
LQ,ϵ, which is closely related to the previously proposed set
of ϵ-acceptable solutions [6].

To capture LQ,ϵ via evolutionary multi-objective optimiza-
tion (EMO) techniques, we have proposed a novel archiver,
ArchiveUpdateLQ,ϵ. This archiver is unbounded and aims to
approximate the entire set of interest in the limit. To assess
the performance of EMO strategies, we have proposed the
performance indicator IEDR. This indicator is based on the
“essentially different realizations” for given points y on the
Pareto front and strongly relates to LQ,ϵ. Finally, we have
presented some numerical results, showing that the inclusion
of the archiver into a wide range of MOEAs improves their
performance w.r.t. IEDR, as well as w.r.t. the hypervolume in-
dicator, significantly for all but one of thirteen optimizers. Fur-
ther analyses show that even a random search equipped with
the archiver performs adequately, emphasizing the archiver’s
impact on the solution quality.

Though the results presented here are very promising, there
are several possible paths of future work that are worth inves-
tigating. First of all, it would be desired to design a specialized
MOEA that aims for LQ,ϵ approximations. In this context, it
would also be beneficial to have further bounded archivers
aiming for this new set of interest. Another interesting aspect
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Fig. 9. Plots of the indicators for different values of δx and for the problems SYM-PART9to9 (first row) and BBOB55 (second row).
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Fig. 10. Plots of the final archive for different values of δx and for the problem
SYM-PART9to9. The first column is decision space, the second column is
objective space. Blue crosses represent the reference set, and red dots represent
the final archive.

would be to incorporate gradient information. This could help
increase the security of the information if a candidate solution
is locally optimal. As a by-product, this should reduce the
number of outliers maintained by the archiver.

A third aspect will be the tuning of the cleaning parameters
for problems with more than three decision variables. Finally,
we would like to stress that the restriction to locally optimal
solutions is one way to reduce the set of nearly optimal
solutions. For further studies it is conceivable to discuss other
possible discretization/reduction strategies.
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J. McCall, “Landscape features and automated algorithm
selection for multi-objective interpolated continuous op-
timisation problems,” in Proceedings of the Genetic



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. Y, XYZ 14

and Evolutionary Computation Conference, GECCO ’21,
p. 421–429, 2021.
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