Publications
Below, you find a chronological list of all my publications. I try to include a freely accessible version of each manuscript where the published version is not open access. In case you need a paper (version) that’s not accessible for you, please get in touch, I’m happy to help!
2026
Schäpermeier, L. & Kerschke, P. (2026). BONO-Bench: A Comprehensive Test Suite for Bi-objective Numerical Optimization with Traceable Pareto Sets. Accepted in ACM Transactions on Evolutionary Learning and Optimization.
- Author version (arXiv)
bonobenchrepository: https://github.com/schaepermeier/bonobench
Kononova, A. V., van Stein, N., Mersmann, O., Bäck, T., Bartz-Beielstein, T., Glasmachers, T., Hellwig, M., Krey, S., Kůdela, J., Naujoks, B., Papenmeier, L., Raponi, E., Renau, Q., Rook, J., Schäpermeier, L., Vermetten, D. & Zaharie, D. (2026). Benchmarking that Matters: Rethinking Benchmarking for Practical Impact. Accepted at EvoStar 2026.
2025
Eimer, T., Schäpermeier, L., Biedenkapp, A., Tornede, A., Kotthoff, L., Leyman, P., Feurer, M., Eggensperger, K., Maile, K., Tornede, T., Kozak, A., Xue, K., Wever, M., Baratchi, M., Pulatov, D., Trautmann, H., Kashgarani, H. & Lindauer, M. (2025). Best Practices For Empirical Meta-Algorithmic Research Guidelines from the COSEAL Research Network. arXiv preprint arXiv:2512.16491.
- Author version (arXiv)
- Living document repository: https://github.com/coseal/COSEAL-Best-Practices
Hernández, C., Rodriguez-Fernandez, A. E., Schäpermeier, L., Cuate, O., Trautmann, H. & Schütze, O. (2025). An Evolutionary Approach for the Computation of ε-Locally Optimal Solutions for Multi-Objective Multimodal Optimization. Accepted in IEEE Transactions on Evolutionary Computation.
Rodriguez-Fernandez, A. E., Schäpermeier, L., Hernández, C., Kerschke, P., Trautmann, H. & Schütze, O. (2025). Finding ε-locally Optimal Solutions for Multi-objective Multimodal Optimization. In IEEE Transactions on Evolutionary Computation, 29(5), 2019-2031.
Schäpermeier, L., & Kerschke, P. (2025). R2 v2: The Pareto-compliant R2 Indicator for Better Benchmarking in Bi-objective Optimization. Evolutionary Computation, 1-17.
Rodriguez-Fernandez, A. E., Schäpermeier, L., Hernández Castellanos, C., Kerschke, P., Trautmann, H., & Schütze, O. (2025). Hot off the Press: Finding ϵ-Locally Optimal Solutions for Multi-Objective Multimodal Optimization. In Proceedings of the Genetic and Evolutionary Computation Conference Companion (pp. 61-62).
Schäpermeier, L. (2025). Greedy Restart Schedules: A Baseline for Dynamic Algorithm Selection on Numerical Black-box Optimization Problems. In Proceedings of the Genetic and Evolutionary Computation Conference (pp. 1199-1207).
2024
Schäpermeier, L., Kerschke, P. (2024). Reinvestigating the R2 Indicator: Achieving Pareto Compliance by Integration. In: Affenzeller, M., et al. Parallel Problem Solving from Nature – PPSN XVIII. PPSN 2024. Lecture Notes in Computer Science, vol 15151. Springer, Cham. Best Paper Award 🥳 (PPSN2024@X)
Heins, J., Schäpermeier, L., Kerschke, P., Whitley, D. (2024). Dancing to the State of the Art?. In: Affenzeller, M., et al. Parallel Problem Solving from Nature – PPSN XVIII. PPSN 2024. Lecture Notes in Computer Science, vol 15148. Springer, Cham.
2023
Prager, R. P., Dietrich, K., Schneider, L., Schäpermeier, L., Bischl, B., Kerschke, P., Trautmann, H. & Mersmann, O. (2023, August). Neural Networks as Black-Box Benchmark Functions Optimized for Exploratory Landscape Features. In Proceedings of the 17th ACM/SIGEVO Conference on Foundations of Genetic Algorithms (pp. 129-139).
Schäpermeier, L., Kerschke, P., Grimme, C., & Trautmann, H. (2023, March). Peak-A-Boo! Generating Multi-objective Multiple Peaks Benchmark Problems with Precise Pareto Sets. In Evolutionary Multi-Criterion Optimization: 12th International Conference, EMO 2023, Leiden, The Netherlands, March 20–24, 2023, Proceedings (pp. 291-304). Cham: Springer Nature Switzerland.
2022
Schäpermeier, L., Grimme, C., & Kerschke, P. (2022). Plotting Impossible? Surveying Visualization Methods for Continuous Multi-objective Benchmark Problems. IEEE Transactions on Evolutionary Computation, 26(6), 1306-1320.
Aspar, P., Steinhoff, V., Schäpermeier, L., Kerschke, P., Trautmann, H., & Grimme, C. (2022). The objective that freed me: a multi-objective local search approach for continuous single-objective optimization. Natural Computing, 1-15.
- DOI (open access): https://doi.org/10.1007/s11047-022-09919-w
Schneider, L., Schäpermeier, L., Prager, R. P., Bischl, B., Trautmann, H., & Kerschke, P. (2022). HPO × ELA: Investigating Hyperparameter Optimization Landscapes by Means of Exploratory Landscape Analysis. In Parallel Problem Solving from Nature–PPSN XVII: 17th International Conference, PPSN 2022, Dortmund, Germany, September 10–14, 2022, Proceedings, Part I (pp. 575-589). Cham: Springer International Publishing.
- DOI (open access): https://doi.org/10.1007/978-3-031-14714-2_40
- Author version (arXiv)
Heins, J., Rook, J., Schäpermeier, L., Kerschke, P., Bossek, J., & Trautmann, H. (2022). BBE: Basin-Based Evaluation of Multimodal Multi-objective Optimization Problems. In Parallel Problem Solving from Nature–PPSN XVII: 17th International Conference, PPSN 2022, Dortmund, Germany, September 10–14, 2022, Proceedings, Part I (pp. 192-206). Cham: Springer International Publishing.
Schäpermeier, L., Grimme, C., & Kerschke, P. (2022). MOLE: Digging Tunnels Through Multimodal Multi-objective Landscapes. In Proceedings of the Genetic and Evolutionary Computation Conference (pp. 592-600).
2021
Schäpermeier, L., Grimme, C., & Kerschke, P. (2021). To Boldly Show What No One Has Seen Before: A Dashboard for Visualizing Multi-objective Landscapes. In Proceedings of the 11th International Conference on Evolutionary Multi-Criterion Optimization (EMO), Shenzhen, China.
2020
Schäpermeier, L., Grimme, C., & Kerschke, P. (2020). One PLOT to Show Them All: Visualization of Efficient Sets in Multi-objective Landscapes. In Proceedings of the 16th International Conference on Parallel Problem Solving from Nature (PPSN XVI), Leiden, The Netherlands, 154–167.